

JERASH UNIVERSITY FACULTY OF PHARMACY DEPARTMENT OF PHARMACEUTICAL SCIENCE

Course Syllabus					
Course Title:	Course code:				
Pharmaceutical Organic Chemistry (I)	1101111				
Course Level: 1 st year	Course prerequisite (s) and/or co requisite (s): Prerequisite: General Chemistry; 0301101 Co requisite: Pharmaceutical Organic Chemistry Lab				
Lecture Time :1:30 hr	Credit hours: 3 hours				

		Academic Staff Specifics					
Name	Rank	Office Number and Location		Office Hours			E-mail Address& Website
Dr. Suhaib Ibrahim	Assistant	510	Sun	Mon	Tues	Wed	م والمالية من المالية م
Alkhamaiseh	Prof.	Pharmacy Building	8-11	8-10 12-2	8-11	8-10 12-2	s.alkhamaiseh@gmail.com

1 Course module description:

Pharmaceutical Organic Chemistry (I) is a three credit hours course; it was designed to be suitable for pharmacy students. This course covers the traditional principles of organic chemistry which are essential for building further understanding and to cover the common organic reactions. Also, to show a biological example to make the material more interesting and meaningful to students. In this course will introduce students to structure and Bonding; polar covalent Bonds; acids and Bases; organic compounds: hydrocarbons, their stereochemistry and IUPAC nomenclature; organic compounds: cycloalkanes and their stereochemistry; stereochemistry at tetrahedral centers; an overview of organic Reactions; alkenes and alkynes; Reactions of alkenes and alkynes; aromatic compounds; and organohalides: nucleophilic substitutions and Eliminations.

2 Course objectives

This course intended for students to have a solid background in pharmaceutical organic chemistry; to distinguish between different functional groups; to understand the pharmaceutical organic compounds structures, hybridizations, and stereochemistry; to give a correct IUPAC nomenclature; to differentiate between organic chemistry reactions types.

3 Course/ module components

The reference textbooks are arranged by relevance

- McMurry, John E. Organic Chemistry with Biological Applications. Cengage Learning, 2015. 3rd edition.
- Hart, Harold, et al. Organic chemistry: a short course. Cengage Learning, 2012. 13th edition.
- T. W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder . Organic chemistry. John Wiley & Sons, Jan 17, 2013. 11th edition.

4 Teaching methods:

Lectures, on-board sketches, tutorials and problem solving.

5 Learning outcome

By the end of this course, students will acquire:

5.1 Knowledge

- To know the basic principle of organic chemistry.
- To understand an electronic structure of the atom and molecules.
- To realize a stereochemistry of organic compounds.
- To outline a functional group in organic chemistry.
- To clarify the organic reaction mechanism.

5.2 Cognitive skills (Thinking and analysis).

- To solve problems.
- To nomenclature compounds.
- To draw structures.
- To recognize reactions mechanism.

5.3 Communication skills (personal and academic):

Discuss problems in groups. Demonstrate work individual or in a team.

5.4 Practical and subject specific skills (Transferable Skills).

Students will be able to examine organic compounds in term of physical properties; distinguished between different functional groups in term of chemical properties. In addition, the course helps the students to comprehend organic chemistry-II, biochemistry, medicinal chemistry and pharmacology properly.

6 Assessment instruments

Assessment method	Mark
First exam	20%
Second exam	20%
Final exam	40%
Quizzes, reports, classroom questions	20
Total	100

Make up exam well be afford for valid reasons only with consent of dean. Make-up exam may be different from regular exam in content and format.

7 Attendance policy:

Absence from lectures and/or tutorials shall not be exceeded 15%. Students who exceeded the 15% limit without a medical or emergency excuse acceptable and approved by the Dean of the relevant college/faculty shall not be allowed to take the final exam and shall receive a mark of zero for the course. If the excuses were approved by the Dean, the number of absence should not be exceeded 20% limit otherwise the student shall be considered to have withdrawn from the course.

8 Documentation and academic honesty

Taking headlines/notes from the text book with further elaborated/detailed discussion during the lecture with avoidance of plagiarism. The citation is provided wherever it is required.

Week	Basic and support material to be covered	Homework/r eports and their due dates
(1)	• Introduction.	
	Structure and Bonding	
	Atomic Structure:	
	Bonding Theory	
	Hybridization	
	Drawing Chemical Structures	
(2)	Polar Covalent Bonds	
	Electronegativity	
	Formal Charges	
	Resonance	
	Acids and Bases	
	Organic Acids and Organic Bases	
(3-4)	Organic Compounds	
	Functional Groups	
	Nomenclature	
	Cis–Trans Isomerism	
	Conformations	
	Axial and Equatorial Bonds	
(5-6)	Stereochemistry	1 st Exam
1 st Exam	Enantiomers	As per time
	Optical Activity	table
	Diastereomers	
	Meso Compounds	
	Racemic Mixtures	
(7-8)	Organic Reactions	
	Kinds of Organic Reactions	
	ReactionsMechanisms	
	Radical Reactions	
	Polar Reactions	
	Using Curved Arrows	
	Describing a Reaction:	

9 Course/module academic calendar

		11
	Equilibria	
	Rates	
	Energy Changes	
	Bond Dissociation Energies	
	Energy Diagrams and	
	Transition States	
	Intermediates	
	Comparison between Biological Reactions and Laboratory	
	Reactions	
(9-10)	Alkenes and Alkynes	2 nd exam
2^{nd} exam	Calculating the Degree of Unsaturation	As per time
	Naming Alkenes and Alkynes	table
	Cis–Trans Isomerism in Alkenes	table
	Alkene Stereochemistry and the E,Z Designation	
	Stability of Alkenes	
	Electrophilic Addition	
	Reactions of Alkenes	
	Orientation of Electrophilic Addition: Markovnikov's Rule	
	Carbocation Structure and Stability	
	Preparing Alkenes: A Preview of Elimination Reactions	
	Halogenation of Alkenes	
	Halohydrins from Alkenes	
	Hydration of Alkenes	
	Reduction of Alkenes: Hydrogenation	
	Oxidation of Alkenes	
	Conjugated Dienes	
	Reactions of Conjugated Dienes	
	The Diels–Alder Cycloaddition Reaction	
	Reactions of Alkynes	
(11-12)	Aromatic Compounds	
	Naming Aromatic Compounds	
	Structure and Stability of Benzene	
	Aromaticity and the Hückel $(4n + 2)$ Rule	
	Aromatic Ions and Aromatic Heterocycles	
	Polycyclic Aromatic Compounds	
	Reactions of Aromatic Compounds: Electrophilic Substitution	
	Alkylation and Acylation of Aromatic Rings: The Friedel–Crafts	
	Reaction	
	Substituent Effects in Electrophilic Substitutions	
	Nucleophilic Aromatic Substitution	
	Oxidation and Reduction of Aromatic Compounds	
(13-15)		
(13-13)		
	Names and Structures of Alkyl Halides	
	Preparing Alkyl Halides	
	Reactions of Alkyl Halides: Grignard Reagents	
	Organometallic Coupling Reactions	
	The SN2 Reaction	
	The SN1 Reaction	
	Elimination Reactions: Zaitsev's Rule	
	The E2 Reaction	
	The E1 and E1cB Reactions	
	A Summary of Reactivity: SN1, SN2, E1, E1cB, and E2	
(15)	Presentation presented by students	Last lecture
(16)	Final Exam Week	Final Exam
Final Exam		Week