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Abstract 

Currently, data sources are widely used in different computing applications. These applications 

use data sources as input devices and then do some processing in order to get the desired 

output. The garbage in garbage out principle applies here. In other words, if the source as an 

input device is not reliable, the output from the related computing application will not be 

reliable. Therefore, it is becoming increasingly important to monitor the reliability of these data 

sources. In our work, we assume that multiple time series are coming from multiple sources. 

Thus, we propose to monitor multiple deviations between multiple data sources as an indication 

of source reliability. We also propose to represent source reliability using subjective logic 

formalism.  
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1. Introduction 

Currently, data sources such as, wireless sensors that provide continuous data streams, are 

widely used in different computing applications [1]. These data sources are used in different 

areas such as health care, infrastructure, environment, military, industry, and research [2]. We 

assume that continuous numeric data sources send their readings to a central station. These 

continuous readings can be used to guide the process of decision making [3]. However, data 

sources can produce incorrect readings that can mislead the decision-making process. Thus, it is 

critical to monitor the reliability of data sources. Our monitoring system uses subjective logic in 

representing source reliability, in which each source’s reliability is a vector of subjective logic 

opinions. 

One of the common ways for estimating source reliability is comparing the source reading with 

a reference value and then if this reading equals the reference value, the source reliability value 

will be updated [4]. In this method, the source will be given an initial weight value that 

represents its reliability. This weight will be high if the source reading is consistent with the 

reference value. On the other hand, the weight value will be low if the source reading is not 



consistent with the reference value. One problem here is, we can’t determine which source is 

the most reliable source during a specific period of time since this method is not time 

dependent. In our approach, we need to detect the changes in source reliability over the time 

period. 

In our approach, source reliability is defined as the source’s consistency with other sources. The 

source reliability is expressed as a vector of subjective logic opinions. Each opinion reflects the 

degree of source reliability and the certainty degree within a specified time interval. Time 

intervals here depend on the sources’ consistency change points.  

Based on this definition of source reliability, our approach is based on the detection of a change 

in the source behavior. There is a considerable number of works in change point detection 

methods. The detection methods aim to detect sudden changes in the source behavior [5]. This 

detection can be done using different techniques such as density-ratio estimation, comparing 

two distributions [6], in which past and present distributions are constructed and then compared 

in order to find if they are significantly different or not. Therefore, change point detection 

methods will be used in our approach to detect the change in the sources’ consistency over the 

time. 

However, the existing change point detection methods deal with individual time series. Figure 

1.A shows an area plot for the input of a value change detection method that deals with one 

time series. We define source reliability as the source’s consistency with other sources. 

Therefore, we need to detect a change in source behavior with other sources. Figure 1. B shows 

the input of our proposed approach, which is multiple time series coming from multiple 

sources.  

Our reliability assessment and monitoring approach detects the change in reliability based on 

the change in sources consistency with respect to other sources instead of detecting the change 

in the reading values of each source. Our approach provides the following contributions: 

• We propose a method to monitor multiple deviations between multiple data sources as 

an indication of source reliability.   

• We also propose to represent the source reliability using subjective logic formalism.  In 

our approach, each source’s reliability is a vector of subjective logic opinions rather 

than just one accumulated value for each source.   



• We demonstrate that our proposed approach can efficiently describe the behavior of the 

source reliability and can be efficiently used for monitoring source reliability. 
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Fig. 1. A) Area plot for the input of value change detection method. 

B) Area plot for the input for our proposed approach. 

The paper is organized as the follows; in section 2; we discuss the background and related 

work, including source reliability, subjective logic, and change points detection methods, in 

section 3; we discuss our proposed approach, in section 4; we provide an experimental study, 

and finally in section 5; we provide our conclusion and future work.  

2. Background and Related Work 

2.1 Source Reliability  

Source reliability can be defined as the trust of the information provided by the source, or, in 

other words, the probability of getting correct information from this source [7]. The source here 

is anything that can collect data such as sensors, publications, human observers, and so on. In 

order for a source to be reliable, the information provided by this source should be replicated 

[7].   

Data reliability and data confidence are very important components of data analysis and 

decision-making process. Thus, unreliable data can weaken the truthfulness of the conclusion. 

During data collection, reliability is ensured by measurement device calibration, adapted 

experimental design, and statistical repetition [8]. However, the growth of big data approach 

and the growth of using the web allow an opportunity to collect extra details from multiple 



sources. Therefore, it is becoming increasingly important to develop some methods to estimate 

the reliability of the source before using it. 

Source reliability can be inferred from several criteria including [9]; (1) source type, (2) 

experimental protocol and methods used to collect the data, (3) statistical procedures such as 

repetition, uncertainty quantification, and experimental design. There are several studies 

arguing that an information source is totally reliable if and only if the information it delivers is 

true in the real world [10, 11]. In other studies, reliable source has been defined as pedigree 

information [12], confidence [13], multi-criterion feature ranking [14].  

Several methods are available to estimate source reliability such as, (1) evidence theory method 

that evaluates reliability based on choosing reliability scores that minimize the error function 

[15]; (2) comparing the source assessments with reference values [16], this method requires the 

definition of an objective error function and a fair amount of data with a known reference 

value. 

Estimating source reliability becomes more difficult in the case of trying to quantify the 

reliability of data collected from human sources, in which humans work as sensors. The 

difficulty here is coming from the uncertain nature of human measurement that is less reliable 

than well calibrated and tested infrastructure sensors [17, 18].  

In our approach, source reliability has the following properties:  

• Source reliability is the source consistency with other sources. The reliability is 

expressed as a vector of subjective logic opinions.  

• Every opinion reflects the degree of source reliability and the certainty degree within a 

specified time interval. Time intervals here depend on the consistency change points.   

• Our approach doesn’t require a reference value. 

2.2 Subjective Logic 

Subjective logic can be defined as a type of probabilistic logic that explicitly takes uncertainty 

into account [19]. In general, subjective logic is suitable for modeling and analyzing situations 

that involve uncertainty and incomplete knowledge. For example, if you toss a coin you will be 

certain that you will get one out of two outcomes, which are head or tail. On the other hand, if 

someone says that there is a life on Venus planet. The possible outcomes can be either yes or 

no. However, no one can be certain that either outcome is correct since there is no complete 



evidence that there is a life on Venus planet. This means that there is uncertainty, and this 

uncertainty can’t be represented by the traditional probabilistic logic. Subjective logic opinion 

can be used whenever there is uncertainty about the argument [20].   

Subjective logic is better than the traditional probabilistic logic in real world situations [19]. 

Subjective logic opinion can be applied when dealing with continuous numeric stream data 

sources. For example, if there is a change point in the source reading stream, then the possible 

justification options for this change is either; an error from a faulting sensor, or a correct 

change that is captured by the sensor. No one can be certain which option is the real source of 

the change. Thus, there is an uncertainty in this situation and that is why subjective logic 

opinion can be applied in our approach. 

The subjective logic opinion can be represented using the interior of an equal-sided triangle 

(Figure 2). In which the opinion about a state x is represented by a metric < bx, dx, ux > where 

bx, dx, and ux are; belief, disbelief, and uncertainty respectively. bx, dx, and ux ϵ [0 1] and bx + 

dx + ux = 1. For example, when you roll a normal six-sided die with numbers from one to six, 

then the subjective logic opinion about getting a number that is less than 7 is: ωx<7 = <1, 0, 0>. 

In this case, we are 100 % certain (uncertainty= 0) that we will get a number that is less than 7. 

On the other hand, the subjective logic opinion of getting a number that is greater than or equal 

7 is ωx>=7 = (0, 1, 0). In this case, we are 100 % certain (uncertainty= 0) that we will not get a 

number that is greater than or equal 7. One more example is about the life in Venus. In this 

example, no complete evidence that there is a life in Venus or not. So, the opinion about the life 

on Venus can be represented by ωlife_Venus = (0.4, 0.35, 0.25). There is uncertainty about the life 

on Venus.   

As shown in Figure 2, the triangle vertices represent the uncertainty, belief, and disbelief. The 

belief line starts from the middle of the edge that connects the other two parameters vertices, 

which is the edge that connects the uncertainty and the disbelief. This also applies to the 

uncertainty and disbelief lines. Each line for belief, disbelief, and uncertainty starts with 0 and 

ends with 1 at the vertex that corresponds to this line. Figure 1 shows how to put ωx = (0.7, 0.1, 

0.2)[21]. 



 

Fig. 2. Opinion triangle with example [21] 

 

The parameter ax is the base rate of x. For example, in tossing an unbiased coin, the probability 

of getting a head is 0.5. Thus, ahead is 0.5. However, if the coin is biased and has a certain 

cutting edge that increases the probability of getting a head, then ahead can be 0.7.  In most 

cases, the state space is binary. So, ax = 0.5. E(x) is the expectation value of x that equals to bx 

+ (ax)(ux) [21].  

In the subjective logic opinion, if bx = 1, this means an absolute TRUE, if dx = 1, this means an 

absolute FALSE. On the other hand, if ux = 1, this means an empty opinion, if ux = 0, this 

means a traditional probability. When 0 < ux < 1, this means an opinion with some uncertainty 

[21]. 

The subjective logic opinions can be combined using operators such as recommendation, 

consensus, and conjunction [22]. Recommendation operator can be used when entity A has no 

opinion about statement P, and there is an entity B that has an opinion about statement P. If A 

has an opinion about B, then A can get an indirect opinion about statement P. The conjunction 

operator can be used to combine two opinions, in which each opinion is about a different 

statement. Consensus operator can be used when there are multiple entities that have opinions 

about statement P in order to come up with one opinion about statement P [22]. 

2.3 Change Points Detection Methods 

Change points detection can be defined as the process of finding sudden changes in time-series 

[23]. One effective change point detection approach is to use the divergence between the 

probability distributions of data in the past and the corresponding data in the future at an 

instance of time t. The time t point can be considered as a change point if the divergence 



between the two distributions is significantly large [23]. The generalized likelihood ratio (GLR) 

[24] and the cumulative sum [25] approaches basically rely on the concept of divergence 

between the probability distributions to detect the change point. In these two approaches, the 

logarithm of the likelihood ratio between two probability distributions is used as a measure of 

change point detection. Each probability density is estimated independently by density 

estimation. The problem with this kind of approaches is the reliance on the density estimation 

[26, 27], which always performs poorly. Additionally, the density estimation accuracy declines 

with noise. 

The density-ratio based change point detection approaches have been proposed in order to 

avoid using the density estimation [5, 28]. Examples of these methods include; kernel mean 

matching (KMM) [27], the Kullback-Leibler importance estimation procedure (KLIEP) [29], 

WKV [30], the unconstrained least-squares importance fitting (uLSIF) and its robust extension 

called relative uLSIF (RuLSIF) [31, 32]. These direct density-ratio estimation methods have 

offered the optimal convergence rate for nonparametric density-ratio estimation. However, the 

accuracy of the density-ratio estimation is likely to be declined by noise features.  

Stationary subspace analysis (SSA) is a dimensionality reduction method for multivariate 

timeseries data [33]. SSA factorizes a multivariate time-series data into stationary and 

nonstationary sources. The change point can be detected in a non-stationary subspace. SSA can 

reduce the dimensionality of data without losing the sudden change characteristic. Therefore, it 

can significantly improve change point detection performance. On the other hand, SSA needs to 

compute the log of a covariance matrix. It also needs a large number of training samples to 

accurately factorize the stationary and non-stationary sources. Thus, an SSA based change 

point detection algorithm is not applicable to high-dimensional change point detection 

problems. 

The additive Hilbert-Schmidt Independence Criterion (aHSIC) method can be defined as the 

weighted sum of HSIC values between each feature and its corresponding pseudo binary labels 

[23]. One advantage of this method is that it can be estimated using features that are important 

for a sudden change, which means that it is more robust to noisy features. One problem with 

this method is the complexity of computing the estimators for HSIC [34]. 

As mentioned in the introduction, common change detection methods are not suitable for our 

purposes since we define source reliability as the source consistency with other sources. 

Therefore, we need to detect a change in the source behavior with respect to other sources. 



3. Proposed Approach 

Our reliability assessment and monitoring approach detects the change in reliability based on 

the change in source consistency with respect to other sources instead of detecting the change 

in the reading values of each source. The approach is composed of three steps: 1) Generating 

subjective logic opinions. 2) Comparing opinions. 3) Making decisions about reliability change 

points. 

3.1 Generating Subjective Logic Opinions 

The subjective logic opinion consists of three parameters; b, d, and u (ω =<b, d, u>). This 

means that we have to generate b, d, and u for each source’s opinion at every instance of time t 

in the time series. Given that b + d + u = 1, then the degree of freedom is 2. Since the degree of 

freedom is 2, we need to generate two parameters (d, u), and then calculate the third parameter 

(b) as; b = 1 - d – u. 

3.1.1 Calculating disbelief (d) 

The disbelief (d) in our approach is related to how far the source reading is from other sources’ 

readings.  For example, if we have three sources S1, S2, and S3 and their readings at  time t are; 

10, 12, and 20 respectively (As shown in Table 1), then S1 reading is 12 units far from other 

sources (2 unit far from S2 and 10 units far from S3), S2 reading is 10 units far from other 

sources (2 unit far from S1 and 8 units far from S3), and S3 reading is 18 units far (10 units far 

from S1 and 8 units far from S2). And the differences matrix at time t= [12 10 18]. 

Table 1. Three sources readings during three time units 

Time Source 1 Value Source 2 Value Source 3 Value 

t-1 10 10 17 

t 10 12 20 

t+1 11 11.5 20 

 

One challenge here is that the differences between the sources’ readings are heavily related to 

the type of the measured variable. For example, if two sources measuring human body 

temperature have 2 units difference between their readings, and another two sources measuring 

atmosphere temperature have 2 units difference between their readings, then the meaning of 

value of 2 here is different in the two cases. To address this challenge, we transform the 

difference in readings to a standardized value by using the equivalent z score value (As shown 

in equation 1). In other words, the difference value is represented by how many standard 



deviations this value is far from the mean of the differences.  In this example, the 2 units of 

difference in human body temperature will be transformed to z1 and the 2 units of difference in 

atmosphere temperature will be transformed to z2. z1 and z2 are different according to the 

standard deviation in each case. 

Z= (value – μ) / σ                                                                                                                      (1) 

Where μ is the mean of the differences’ matrix, and σ is the standard deviation of the 

differences’ matrix. 

If one source is far from other sources by a threshold value (For example, 6 standard 

deviations), then this source will get a high disbelief value, which means that we can’t trust this 

source. We use exponential function property here because e-x approximately saturates for x>6. 

The source disbelief at time t is given by equation 2:  

Disbelief (di) = 1 – e-k|(diff_avgi – μ )/σ|                                                                                          (2)  

Where di is the disbelief of source i. diff_avgi is the averaged source i difference from all other 

sources’ readings. μ is the sources averaged differences matrix mean, and σ is the sources 

averaged differences matrix standard deviation, k is a control factor to specify at which point 

the uncertainty saturates since this value scales the | diff_avg – μ )/σ | and then the power of the 

exponential. For example, to calculate the disbelief for source 1 at time t using the data from 

Table 1: 

                                      

As it is a symmetric matrix, we can sum either; row 1 or column 1 values in order to get the 

total difference value for source 1. To find the source 1 differences average, we divide the total 

differences of source 1 by the (number of sources -1). Thus, source 1 differences average = (0 + 

2 + 10)/ (3-1) = 6. 

Sources averaged differences matrix= [6 5 9],   μ = 6.667, and σ = 2.0817  

By applying equation 2 to source 1 using k=0.5, then  



d1 = 1 – e-0.5|(6 – 6.667 )/2.0817|= 0.1480 

 

3.1.2 Calculating Uncertainty (u) 

The uncertainty (u) in our approach is related to how far each source reading is from the mean 

of all sources’ readings after excluding the extreme readings. For example, if we have four 

sources S1, S2, S3, and S4 and their readings at time t are; 10, 11, 13 and 30 respectively. In 

this case, S4 reading is an extreme value. If S4 is included in the mean calculation, then the 

mean will be 16. However, if we exclude the S4 reading, then the mean will be 11.33. Having 

extreme readings will lead to misleading results. As in the previous example, having a mean 

value of 16 means that sources 1, 2, and 3 are far from the mean, and thus their disbelief values 

will increase. On the other hand, having a mean value of 11.33 means that sources 1, 2, and 3 

are close to the mean, and thus their disbelief values will be lower than the disbelief values 

when using extreme case. In both cases, the extreme value will be far from the mean and will 

get the highest disbelief value. In the next step, we calculate how many standard deviations 

each source reading is far from the mean.   

The uncertainty of the reading is related to the distance between this reading and the mean. 

Thus, when the reading is far from the mean it will gain more uncertainty. If the source is far 

from the mean of the readings by a threshold value or more such as 6 standard deviations, then 

the source will gain a higher uncertainty score. We use exponential function property here 

because e-x approximately saturates for x>6. The source uncertainty value at a time t is given by 

equation 3: 

Uncertainty (ui) = 1 – e-k|(xi – μ )/σ|                                                                                               (3) 

Where ui is the uncertainty of source i, xi is the reading of source i, μ is the readings mean after 

excluding the extreme readings, and σ is the readings standard deviation after excluding the 

extreme readings, k is a control factor to specify at which point the uncertainty saturates since 

this value scales the | xi – μ)/σ | and then the power of the exponential. For example, to 

calculate the uncertainty for source 1 at time t using the data from Table 1: 

Readings _Average = (10 + 12 + 20) / 3 = 14 

By using k=0.5, the Source 1 uncertainty (u1) = 1 – e-0.5|(10 – 14 )/5.92|  = 0.343 



3.1.3 Calculating belief (b) 

As b + d + u = 1 then          

bi = 1- di – ui                                                                                                                         (4) 

          

The value of disbelief (di) ranges from 0 to 1. Additionally, the value of uncertainty (ui) ranges 

from 0 to 1. As a result, the value of (di + ui) can be greater than 1. Therefore, it is important to 

check the sum of disbelief and uncertainty. So, if the value of (di + ui) > 1, then the sum needs 

to be scaled down to (di + ui = 1). Equation 5 will be used to scale down the value of disbelief 

and uncertainty. 

new_ ui = ui / (di + ui)  and   new_ di = di / (di + ui )                                                            (5) 

In order to find the belief value for source 1 at time t using the data from Table 1:  

Check if (d1 + u1) > 1, (d1 + u1) = (0.1480 + 0.3430) = 0.491, then no need to scale d1 and u1.  

b1 = 1 - d1 - u1 = 1 – 0.1480 – 0. 3430= 0.509 

When the source reading is far from other sources’ readings, then it will have a high uncertainty 

value and a high disbelief value. Thus, it will have a low belief value. On the other hand, when 

the source reading is close to the other sources’ readings, then it will have a low disbelief value 

and a low uncertainty value, which will result in a high belief value. 

3.1.4 Special cases in the proposed approach 

To illustrate our approach, we consider some special cases of reliability opinions. An opinion 

can be represented as ω= <b, d, u> b, d, u and ϵ [0 1], b + d + u =1. If either one of b, d, or u 

equals one, then there will be a special case. If there are n sources, then all sources readings 

matrix can be defined as S= [s1, s2… sn]. The followings are the special cases: 

• Case 1: ω= < 1, 0, 0>.    

When all sources provide the same value such as S = [10 10 10], then the opinion for each 

source will be the same and equals to: ω= <1, 0, 0>. 

 

• Case 2: ω= < 0, 1, 0>.    



When the source reading is far from all other sources’ readings by at least a threshold 

value, then the opinion for this source is: ω= < 0, 1, 0>.  For example, If S= [10 15 100 22] 

and the threshold value is 50, then source 3 will have an opinion of   ω= < 0, 1, 0>. 

 

• Case 3: ω= < 0, 0, 1>.   

When the source reading is an extreme value and far from other sources readings mean by 

at least a threshold value, then the opinion of this source will be ω= < 0, 0, 1>.  For 

example, If S= [10 12 700] and the threshold value is 100, then source 3 will have an 

opinion of ω= < 0, 0, 1>. 

3.2 Comparing Subjective Logic Opinions 

In order to compare the subjective logic opinions that consist of <b, d, u>, it is important to 

combine each opinion’s parameters, and get one value to represent this opinion. In our 

approach, we are interested in the change of opinions not the expectation value of the opinions. 

The combination of b, d, and u for each opinion is done using equation 6: 

Combination_b_d_u = | k*log(b) / ( log(u) - log(d) ) |                                                               (6) 

Where b, d, and u are the opinion belief, disbelief, and uncertainty. k is the scaling factor.  

The logarithm is used in equation 6 since b, d, and u ϵ [0 1]. Thus, the logarithm of b, d, and u ϵ 

[-∞ 0]. The absolute of the logarithm of b, d, and u will be greater than the values themselves, 

which will result in a more significant difference for comparing. For example, if b changes 

from 0.6 to 0.8, then its logarithm will change from -0.5108 to -0.2231; the change in b value is 

0.2 but the change in its logarithm is 0.29, which is more helpful in detecting the change since 

the difference is higher. 

Assume that opinion ω1 = <0.6, 0.25, 0.15>, ω2 = <0.68 0.20, 0.12>, and k=1, then the 

combination of ω1 (using equation 6) will be (ω1_Comb_b_d_u = 1) and the combination of 

ω2 will be (ω2_Comb_b_d_u = 3.0813). The difference between the two combinations is 

2.0813. In this example, in order to compare the two opinions, then the combined values (1, and 

3.0813) will be used in the comparison. 

3.3 Making decision about the reliability change points 



After converting each source opinion to one value, then each source will have its combined 

opinions for each instance of time. For each source, we detect the change point of reliability 

using the two sliding windows method [35]. The two windows are; reference window and 

current window. These two windows have the same width (w). The reference window extends 

from time t to time t + w, while the current window extends from time t + w + 1 to time t + 2w 

+ 1. For each window, we calculate the mean and standard deviation for each window and then 

compare the two means and the two standard deviations. If there is any significant change in 

the means or in the standard deviations, then we regard that there is a reliability change point at 

time t + w + 1. After that, the reference window will be updated. So it will extend from time t + 

2w +2 to time t + 3w + 2. Additionally, the current window will extend from time t + 3w +3 to 

time t + 4w + 3. If there is no significant change in the means and in the standard deviations of 

the reference and current windows, then each window will be shifted by one time unit, and the 

comparison will be done again. The comparison between the two windows will be done as the 

following: 

| log (Ref_Mean / Curr_Mean) | > Mean_Threshold, OR 

| log (Ref_Std / Curr_Std) | > Std_Threshold 

We use log (a/b) here because we are interested in either (a/b > threshold value) or (b/a > 

threshold value). Using the absolute value of log (a/b) will give the same result for both a/b and 

b/a.  

Since we are comparing the change in reliability for multiple sources, we may get some 

clustered reliability change points. This is because each source may provide a reliability change 

point that is close to another source reliability change point. In the case of clustered change 

points, we filter these points using a scanning window that has the same width of the reference 

and current windows.   

In the filtering process, if there is more than one reliability change point within the scanning 

window, then a new change point will be created based on the weighted average of the 

clustered change points. The new change point will be located close to the strongest reliability 

change point.  The location of this new point is identified by taking the weighted average time 

of the clustered change points’ times. For example, if source 1 combined reliability value has 

changed at time t from the value 20 to 12, and source 2 combined reliability value has changed 

from the value 20 to 8 at time t + 3, and the scanning window width is 10-time units.  In this 



case, there will be two reliability change points; one at time t, and one at time t+3. Therefore, 

after doing the filtering process there will be just one reliability change point that is closer to 

source 2 time (t + 3 ). This is because the change in the combined reliability value of source 2 is 

stronger than the change in the combined reliability value of source 1. 

 

Table 2. Reliability monitoring algorithm 

Reliability monitoring algorithm 

   

Input: readings from multiple sources (S1, S2, . . ., Sn) for each time (t1, t2, …, tm)     

Output: Reliabilities R*={ωij, i=1:m,j=1:n}     

for i=1 to n        

initialize reference average μref and  σref for the period t=1 to t=window width        

for j=1+w to m-w           

get the current average μcur and  σcur for the period t=j to t=j+window width           

compare the μcur and μref averages as well as the σcur and σref           

if the comparing (μcur and μref)> μthreshold or comparing (σcur and σref)> σthreshold 

add new change point(time j, source n, comparing result value) to the change   points matrix          

else   

slide the reference and current windows one slot.           

end if           

update the reference and current window.         

end for      

end for      

filter the change point matrix 

 

 

 

 

4. Experimental study 

In this section we perform a simulation-based study of our approach. We applied our approach 

to small- and large-scale scenarios. MATLAB R2014b software was used in this experiment. 

The experiment was performed using a machine with the following characteristics: AMD 

Phnom™ II N850 Triple-core Processor 2.20 GHz processor and 4 GB RAM. 

4.1 Small scale experiment setup 

In order to detect the change in reliability we use simulated data, in which the changes in the 

sources’ readings are known.  Figure 3 shows a data set of three sources (S1, S2, and S3) for a 



time series (t1, t2.  . . t100). In this data set, the three sources are consistent during the period 

(t1...t25). At time t26, source 3 deviates from the other two sources. At time t50, source S2 also 

starts to deviate, and at time t76, source 2 and source3 start to deviate in more severe patterns 

than the previous period of deviations (t26...t50, t51...t75). The time for this dataset is divided 

into four intervals; each interval has different values of mean and standard deviation for each 

source as shown in Table 3. 

Table 3. Three sources with different distributions 

Region Region Interval Sources Mean Source Standard Deviations 

R1 t1...t25 μ1= μ2 = μ1 = 11       σ1= σ2= σ3= 0.2    

R2 t26...t50 μ1= μ2 = μ3 = 11       σ1= σ2= 0.2 σ3= 2   

R3 t51...t75   μ1= μ2 = μ3 = 11       σ1=0.2  σ2=2 σ3= 4     

R4 t76...t100  μ1=11 μ2=15 μ3=20       σ1=1  σ2=3  σ3= 6   

 

 

Fig. 3. Area plot for the three sources readings 

 

Figure 3 is an area plot for the three sources (as shown in Table 3) after generating 100 records 

for each source using its μ and σ. Source 1 distribution is shown in green, source 2 distribution 

is shown in red, and source 3 distribution is shown in blue. The vertical lines demarcate the 

changing behavioral patterns of the sources. At t25, source 3 starts to deviate from other 

sources. At t50, source 2 starts to deviate and source 3 continues to deviate in a more severe 

pattern. At t75, source 1 starts to deviate, while sources 2 and 3 start to deviate in more severe 

patterns than the previous deviation. 



4.2 Small Scale Experiment Results 

After applying the proposed approach 200 times on a predefined dataset, we attained consistent 

results with approximately similar outputs in the 200 times.  The following Figures illustrate 

the result we attained from one case (the identical case in Table 3). 

 

A                                                                    B 

Fig. 4. A) Area plot for subjective logic opinions for three sources. 

  B) Area plot for averaged values. Window width=11. 

  

                             A                                                     B 

Fig. 5.  A) Area plot for subjective logic opinions for three sources. 

 B) Area plot for averaged values. Window width=14. 

Figures 4 and 5 show the reliability of three sources using window width of 11 and 14 time 

units respectively. The source’s reliability is represented by subjective logic opinions, in which 

each opinion is related to a different region. In Figure 5, each source has a reliability opinion 

for each region: region1 [t1:t26), region 2 [t26:t52), region 3 [t52:t76), and region 4 [t76:t100). 

The belief is represented by green, disbelief is represented by red, and uncertainty is 

represented by blue. 



As b + d + u = 1 for each opinion, then source 1 opinion area extends vertically from 0 to 1, 

while source 2 opinion area extends from 1 to 2 and source 3 opinion area extends from 2 to 3. 

The vertical lines represent the change points in reliability. Between each two consecutive lines 

there is a different region of reliability.  Figures 4(b) and 5 (b) show the averaged belief, 

disbelief, and uncertainty for each source within each region.   

Our proposed approach can accurately detect the reliability change points. Based on the input 

data set shown in Table 3, there should be change points at t25, t50, and t75. If we look at the 

output result shown in Figure 5 the change points at these times can clearly be seen. 

At time (t26), source 3 got less reliability level because of its deviation from the other sources. 

At time t52, source 2 started to deviate. As a result, source 3 got more reliability level since it 

has become more consistent with source 2. Additionally, source 1 and source 2 got lower 

reliability levels since they are no longer as consistent as before. In general, if the source is 

more consistent with other sources it will have a higher reliability value (expressed as a 

subjective logic opinion) as shown in Figure 6. Deviation doesn’t necessarily indicate low 

reliability because if this deviation makes the source consistent with other sources, it will give 

the source more reliability. 

 
                                        A 

 
                                       B                                                                  C 



Fig. 6. A) Source 1 belief vs. different numbers of consistent sources with source 1 

           B) Source 1 disbelief vs. different numbers of consistent sources with source 1 

           C) Source 1 uncertainty vs. different numbers of consistent sources with source 1  

 
Figure 6 shows the belief, disbelief, and uncertainty for source 1 in different cases. In case one, 

there is one source consistent with source 1. In case two, there are two sources consistent with 

source 1. In case three, there are three sources consistent with source 1, and in case four, there 

are four sources consistent with source 1.   

From Figure 6.A we can see that the source belief value increases when the number of 

consistent sources with this source increases. However, Figure 6.B and Figure 6.C show that 

the disbelief and uncertainty values decrease when the number of consistent sources with this 

source increases. The decrease in the uncertainty value is larger than the decrease in the 

disbelief value for any source as shown in Figure 6.B and Figure 6.C. This is because | 

(Source1_Reading – μ)/σ | is smaller than | (Source1_AvgDiff – μ)/σ |.   

Figure 7.A shows the relationship between the window width and the number of reliability 

change points. Figure 7.B shows the relationship between the comparison threshold and the 

number of reliability change points. Using wider windows will result in smaller number of 

regions. However, the sensitivity to detect the change will be low. Additionally, there is another 

factor that affects the number of reliability change points, which is the comparison threshold 

that is used in comparing the means and the standard deviations between the reference and 

current windows. Higher threshold will ignore small changes, and this will lead to a smaller 

number of reliability change points as shown in Figure 7.B. 

     

0

1

2

3

4

5

6

7

1 4 7 1013161922252831343740434649

N
u

m
b

er
 o

f 
R

el
ia

b
ilt

y 
ch

an
ge

 P
o

in
ts

Reference and Current  Windows 
Width

Number of Reliabilty 
Change Points Vs Windows 

Width

0

1

2

3

4

5

6

7

8

0.2 10.2 20.2 30.2 40.2 50.2N
u

m
b

er
 o

f 
R

el
ia

b
ili

ty
 C

h
an

ge
 P

o
in

ts

Comparison Threshold

Number of Reliabilty Change 
Points Vs Comparison Threshold



                              A                                                                 B 

                     Fig. 7. A) Number of Reliability Change Points vs. windows width. 

                                B) Number of Reliability Change Points vs. comparison threshold.                

As shown in Figure 7.A, when the window width is 7, then the number of reliability change 

points is 6. However, when the window of width is wider such as 14, then the number of 

reliability change points is 5. Using lower value for window width makes the detection of 

change points more sensitive to any change, while using higher values for window width makes 

the detection less sensitive to change points.   

Using lower threshold value in the comparison of two distributions will result in more 

reliability change points. For example, 0.2 threshold will result in 7 reliability change points, 

while larger threshold value such as 8 will result in 3 reliability change points. Using lower 

value for threshold makes the detection of change points more sensitive to any change. 

However, using higher values for threshold makes the detection less sensitive to change points. 

Figure 8.A shows the relationship between the relative averaged error and the window width. 

Figure 8.B shows the relationship between the relative averaged error and the comparison 

threshold. The relative averaged error can be calculated using equation 7. 

Relative_Averaged_Error=1/n∑ |(Detected_Pointk −Ref_Pointk) n k=1 /Ref_Pointk|             (7) 

Where n is the Max (number of detected change points, number of reference points). Each 

detected point is mapped to the nearest reference point. For example, if a reference set of points 

R = {20, 36, 55}, then the detected point 33 is mapped to the point of value 36 from R. 

                    

                              A                                                                 B 

                     Fig. 8. A) Relative averaged error vs. windows width. 

-5

0

5

10

15

20

0 10 20 30 40

R
el

at
iv

e 
A

ve
ra

ge
d

 E
rr

o
r 

Window Width

Relative Averaged Error vs. 
Window Width

0

5

10

15

20

0 2 4 6 8

R
el

at
iv

e 
A

ve
ra

ge
d

 E
rr

o
r 

Comparizon Threshold

Relative Averaged Error vs. 
Threshold



                                 B) Relative averaged error vs. comparison threshold.                

As shown in figure 8.A, using high window width and high comparison threshold can result in 

a large error of reliability change detection. For example, using window width of 30 and 

comparison threshold of 5 will result in a large error in detection. The error here doesn’t mean 

that we have incorrect reliability change points. Instead, it means that we have incorrect 

number of the reliability change points. That is either, lower number of change points than 

expected or larger number of change points than expected. For example, if there is an actual set 

of points R = {20, 36, 55, 76}, and the detected set of points D = {51, 77}.  In this example, the 

two detected points are correct. However, the number of the detected points is incorrect. 

Table 4 shows three cases of reliability change point detection. In case 1, the number of 

detected change points is less than the number of actual points. In case 2, the number of 

detected change points equals the number of actual points. In case 3, the number of detected 

points is larger than the number of reference points. In case 1 and case 3, the relative averaged 

error is high since there is a difference in the number between the detected change points and 

the actual points, which results in an error in the mapping between the detected and the actual 

points. Each point is mapped to the nearest point in the other set.  For example (As shown in 

Table 4), X (20) in case 1 is mapped to Y (51), and X (18) in case 3 is mapped to Y(55). On the 

other hand, if the number of detected change points equals the number of actual points, then the 

relative averaged error will be low. For example, X (20) in case 2 is mapped to Y (20). 

Table 4. Three cases of reliability change detection 

Case 1 

R = {20, 36, 55,76}          

D ={51,77} 

X = Larger set of R,D        

Y =Smaller set of R,D  

 

X Y |(Y-X)/X | 

20 51 31/20 

36 51 15/36 

55 51 4/55 

76 77 1/76 

Total 2.053 

 Total / n 0.5133 
 

Case 2 

R = {20, 36, 55,76}          

D ={20, 35, 51,77} 

X = Larger set of R,D        

Y =Smaller set of R,D  

 

X Y |(Y-X)/X | 

20 20 0/20 

36 35 1/36 

55 51 4/55 

76 77 1/76 

Total 0.1137 

 Total / n 0.0284 
 

Case 3 

R = {55,76}          

D ={18, 30, 51,77} 

X = Larger set of R,D        

Y =Smaller set of R,D  

 

X Y |(Y-X)/X | 

18 55 37/18 

30 55 25/30 

51 55 4/51 

77 76 1/77 

Total 2.98 

 Total / n 0.745 
 

 
To come up with a one final result from multiple sources, we use the consensus operator in 

order to combine the multiple opinions about the sources readings average into one opinion 



[22]. As shown in Figure 9.B, the average of readings from multiple sources within each region 

is stated in each region. 

                    

Fig. 9. A) Subjective logic opinion about the sources’ readings average for each region.                      

B) Averaged subjective logic opinion about the sources' readings average for each region. 

4.3. Large scale experiment set up 

In this experiment, there are 25 data sources. Each data source has different mean and standard 

deviation, which are assigned randomly using MATLAB. We just present this large-scale 

experiment to show that our approach can be applied to any number of sources. All discussion 

from the small-scale experiment will be applied here.  

We randomly generated 25 means and 25 standard deviations. After that, we assigned a mean 

and a standard deviation to every source, and then we generated 100 reading values for each 

source using its μ and σ. After applying the approach, we got the following results. Figure 10 

shows the subjective logic opinions for the 25 sources 

4.4 Large scale experiment results 

Figure 11 shows the area plot for the subjective logic opinions for the 25 sources. Figure 12 

shows a zoom in view of source 9. We can see that source 9 has a low belief value and high 

disbelief and uncertainty values. This low belief value means that source 9 readings are far 

from other sources. As shown in Figure 11, source 13 and source 15 have high belief values 

since their readings are consistent with the other sources’ readings. 

 



 

Fig. 10. Area plot for subjective logic opinions for 25 sources. 

 

 

 

 

 



 

Fig. 11. Area plot for averaged subjective logic opinions for 25 sources. 

 

Fig. 12. Area plot for averaged subjective logic opinions for source 9. 

Table 5 shows 30 readings from sources 9, 13, and 15 and their belief values. It is clear that 

source 9 readings are far from the other two sources. Source 9 values are in the range (18:23), 

while source 13 and source 15 values are in the range (12:17). 

Table 5: Source 9, 13, and 15 readings, and their corresponding belief values  

Time t   S9 S13 S15   S9 _b S13 _b S15 _b 

1   19.77507 13.65453 13.39954   0.08913 0.501393 0.514336 

2   20.72783 15.59529 13.4814   1.00E-10 0.587713 0.513649 

3   23.31965 14.75939 12.99166   1.00E-10 0.606329 0.67203 



4   22.56084 13.49526 12.34677   1.00E-10 0.588026 0.655517 

5   19.96574 14.48278 13.27402   0.201681 0.542224 0.621861 

6   18.69248 13.46591 13.57264   0.283943 0.58755 0.578307 

7   20.9463 12.55796 13.24514   0.072907 0.532551 0.589044 

8   22.03072 13.71037 13.34898   1.00E-10 0.551947 0.565168 

9   23.03662 13.23019 13.28271   1.00E-10 0.656599 0.651451 

10   21.86463 12.63286 12.94307   1.00E-10 0.577778 0.604574 

11   20.18528 15.81529 13.19923   0.040758 0.515249 0.59391 

12   22.158 13.50594 13.39566   1.00E-10 0.53173 0.537045 

13   20.11619 17.24487 13.33196   0.098729 0.499834 0.638194 

14   20.40809 12.73488 13.7037   0.254077 0.570584 0.659971 

15   20.83238 14.01709 13.50783   0.303186 0.634138 0.653232 

 

Our approach can capture the inconsistency between different sources and reflect the degree of 

this inconstancy. It also can determine the period of this inconstancy. For example, As shown 

in Figure 11, sources 13, and 15 have high belief values in the period [t1:t100]. This means that 

these two sources are consistent with the other sources. Source 12 has a low belief value in the 

period [t21:t35]. In the other hand, it has a high belief value in the period [t36:t50]. If we go to 

Table 6, we can find that source 12 is far from sources 13 and 15 within the period [t21:t35]. 

On the other hand, source 12 is relatively close to sources 13 and 15 within the period [t36:t50]. 

If we calculate the total difference between source 12 and sources 13 and 15 in the period 

[t21:t35], we find that it equals to 234.3668, while the total difference between source 12 and 

sources 13 and 15 in the period [t36:t50] is 143.6051. Therefore, the change points and the 

sources subjective logic opinions shown in Figure 11 are compatible with the data in Tables 5 

and 6. This ensures that our approach can accurately work on any number of sources. 

Table 6. Source 12, 13, and 15 readings, and their corresponding belief values 

Time t   S12 S13 S15   S12 _b S13 _b S15 _b 

21   20.86666 11.20937 13.65205   1.00E-10 0.542678 0.622147 

22   17.84667 12.76814 13.15242   4.91E-01 0.656834 0.651143 

23   21.97382 13.58133 13.00024   1.00E-10 0.647482 0.608106 

24   20.14622 15.39586 13.55171   7.85E-02 0.559692 0.677297 

25   19.9442 15.31776 12.673   1.00E-10 0.491627 0.607042 

26   30.87008 13.13514 13.8152   1.00E-10 0.637721 0.620209 

27   17.80486 14.553 13.30997   0.4105 0.498908 0.525411 

28   19.93364 12.69746 13.7723   0.137865 0.632965 0.614879 

29   29.89884 14.16138 13.29002   1.00E-10 0.703787 0.718038 

30   15.91891 16.03028 13.70429   4.95E-01 0.491804 0.654287 



31   22.12343 13.40981 13.3874   1.00E-10 0.668511 0.669149 

32   16.17529 12.72837 13.45757   5.16E-01 0.563139 0.5093 

33   23.867 12.43109 13.64552   1.00E-10 0.617303 0.648352 

34   21.30038 14.24386 14.01773   5.25E-02 0.573584 0.585332 

35   22.48527 15.16896 12.90519   1.00E-10 0.557447 0.663148 

36   19.08682 16.34378 12.2981   0.588373 0.438104 0.54535 

37   20.99981 13.25675 12.20369   0.19781 0.595437 0.508974 

38   25.48001 13.41916 13.35244   1.00E-10 0.659607 0.663304 

39   11.79978 12.23339 13.16369   0.614573 0.622672 0.575008 

40   14.14264 15.57831 13.34125   6.18E-01 0.581759 0.69038 

41   21.62139 13.06378 13.1121   1.00E-10 0.588619 0.585992 

42   17.71461 12.47102 13.5329   4.76E-01 0.689702 0.641314 

43   19.02299 16.43104 13.95623   0.489039 0.482677 0.62688 

44   14.64045 14.38305 13.15965   5.59E-01 0.568285 0.635554 

45   16.80178 14.24367 13.6625   5.93E-01 0.512934 0.563278 

46   18.62935 11.67777 13.94902   1.68E-01 0.538587 0.578993 

47   17.45533 13.82291 12.13984   0.619123 0.640453 0.589856 

48   16.94177 13.9513 13.24294   6.08E-01 0.582229 0.601552 

49   18.56487 11.54861 12.97337   1.07E-01 0.705197 0.595602 

50   16.66368 12.83975 12.63978   0.545392 0.679265 0.667904 

 

5. Conclusion and future work 

We presented a reliability assessment and monitoring approach for multiple data sources using 

subjective logic. We define source reliability as the source consistency with other sources. Each 

source’s reliability is a vector of subjective logic opinion rather than just one weighted value 

for each source. The proposed approach can describe the behavior of the source reliability, 

which means that one can see where the source gains more reliability and where it loses some 

reliability.   

We conducted a small and a large-scale simulation-based study of our approach. We 

demonstrated that, our approach accurately detects the reliability change points, regardless of 

the number of sources. The accuracy of detection depends on the size of sliding window and 

the comparison threshold. In future work, we will explore optimal size of sliding window.  

Additionally, we will investigate methods for predicting source reliability, as well as, methods 

for data conflict resolution based on the source reliability. 
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