

Investigating Software Maintainability Development:Investigating Software Maintainability Development:Investigating Software Maintainability Development:Investigating Software Maintainability Development:

A case for ISO 9126A case for ISO 9126A case for ISO 9126A case for ISO 9126

Ahmad Haboush, Mohammad Alnabhan, Anas AL-Badareen, Mohammad Al-nawayseh and Bassam EL-Zaghmouri

Faculty of Information Technology, Jerash University

Jerash, Jordan

Abstract
Software maintainability has been considered as a main

characteristic in many software product quality models. However,

these models have different definitions for maintainability and

sub characteristics. ISO 9126 is one of the main and most

frequently used models in software product quality. This model

has been revised and replaced by ISO 25010 as a new model of

software product quality. In addition to the many modifications

that were performed on ISO 9126 model, maintainability was one

of the main modified characteristics. However, it was developed

unclearly without any standard base, and with no clear definition

or evidence of how the sub characteristics were defined and

modified. This paper investigates these modifications and the

differences between the definitions of the maintainability in the

two models, ISO 9126 and ISO 25010. As a result of this

discussion, it has been concluded that both models ISO 9126 and

ISO 25010 lack of a clear definition or standard base for defining

software maintainability and its sub characteristics.

Keywords: Quality Model, ISO/IEC 9126, ISO/IEC 25010,

Maintainability, Reusability.

1. Introduction

The In last decades, many models of software quality have

been proposed. In 1978, ISO/IEC intended to propose a

standard model for software quality in order to unify the

evaluation process of software quality as well as to

eliminate the debate between software quality models. The

first version was released in 1991, and called ISO 9126.

As shown in figure 1, the model specified six

characteristics including Functionality, Reliability,

Usability, Efficiency, Maintainability, and Portability;

which are further divided into 21 sub-characteristics. The

defined characteristics are applicable to every kind of

software, including computer programs and data contained

in firmware, and provide consistent terminology for

software product quality. They also provide a framework

for making trade-offs between software product

capabilities. Several corrections and enhancements were

performed and revised versions were released, as follows:

• ISO/IEC 9126-1 [1]: new updated quality model.

• ISO/IEC 9126-2 [2]: new set of external measures.

• ISO/IEC 9126-3 [3]: new set of internal measures.

• ISO/IEC 9126-4 [4]: new set of quality in use

measures.

However, this model suffers from the ambiguity in the

definition of the quality characteristics and their

relationships [5], and it is not suitable to measure the

design quality of software product [6]. The inconsistency

in definitions of the quality characteristics and their sub-

characteristics results contradictions in the developed

models [7]. Consequently, different quality models are

developed to evaluate same types of software products.

Therefore, ISO/IEC proposed a new model that aim to

resolve these problems and many others as stated in

literature.

ISO/IEC 25010 [8] is a derived version from ISO/IEC

9126:1991 (see figure 2). The model incorporates the same

quality characteristics with some modifications. Software

maintainability is one of the main characteristics that were

Fig. 1: The ISO/IEC 9126 Model

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 18

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

affected by these modifications. Two characteristics were

eliminated (stability and compliance) and new other two

were added (reusability, and modularity).

However, as in ISO 9126, the maintainability sub

characteristics were defined ambiguously without clear

definition or standard form, the modifications in the new

version ISO 25010 were also performed in the same way.

The paper starts in section two with presenting the

maintenance process and its objectives. Section three

presents the reuse process and its relationship with the

maintenance. Section four presents the modularity

characteristic and its relationship with maintenance

processes. Section five presents the stability and its

relationship with modifiability. Section six presents the

compliance characteristic. Finally, discussion and

recommendations are presented in section seven.

2. Software Maintenance

Software maintenance is the process of modifying software

product either for correction, enhancement, or adaptation.

It is an inescapable part of software lifecycle [9], which is

required to keep the software product useful and updated

with the world changes [10-11]. However, the main

problem with software maintenance is that it is the most

hard, costly and error and error-prone process in software

life cycle [12-13]. Its cost is approximately equal to (80-

90%) of the total cost of software development life cycle

[10, 14]. Therefore, much attention has been given to this

process, and how it can be performed efficiently with a

minimum cost.

The maintenance process has been defined as one of the

main factors that have impact on the quality of the software

product. The ability to achieve this process has been

considered early since the first model of software quality.

All the models agreed that, software maintainability is one

of the main factors in software quality, but they differ in

the characteristics that are used to measure this factor and

the structure of these characteristics. Generally, software

maintenance requires an understandable, analyzable,

modifiable, and testable software product in order to be

performed efficiently.

According to ISO/IEC 25010 [8], software maintainability

is the degree of the effectiveness and efficiency of

modifying the software product by maintainers. This

characteristic represents the ability to modify the software

product efficiently and easily in order to correct, enhance,

or adapt it. ISO 9126 involves five sub characteristics in

order to measure the maintainability factor: analyzability,

changeability, stability, testability, and compliance, while

ISO 25010 involves modularity, reusability, analyzability,

modifiability, and testability.

According to IEEE [15] software maintainability is any

modification made on software product after delivery, in

order to correct faults, improve performance and other

attributes, or to adapt the product to a modified

environment. This standard identified four main objectives

that the maintenance process can be performed for:

a) Corrective;

b) Adaptive;

c) Perfective; and

d) Emergency.

Fig. 2: The ISO/IEC 25010 Quality Model

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 19

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

According to AL-Badareen [16-17], software maintenance

is a process of modifying software product, which

conducted through four main tasks: understanding,

analyzing, modifying, and testing the software product, see

figure 3.

Fig. 3: Software Maintenance Processes

Software maintenance mainly focuses on the modification

of software product. According to Souza [10], the

maintenance process is performed on software product

after its delivery. The maintenance process does not care

about modifying the software product, as much as

achieving the modification objectives efficiently.

3. Software Reuse

Software reuse is the process of using an existing software

product or part of it in order to develop a new software

product. This process is used to reduce the effort, cost, and

time of developing software products [18]. It increases the

productivity of software development [19] [20] as well as

enhances the quality it[21].

According to ISO/IEC 25010 [8], software reusability is

the ability of the software asset to be used in developing

more than one software product or other assets. Reusability

also is the degree to which a thing can be reused [22]. It

represents the ability to use a part or the whole system in

other systems [23-26] which are related to the packaging

and scoping of the functions that programs perform [27].

For any software asset, two main conditions must be

achieved in order to be used in the new system: the ability

to achieve the intended functions in the new system, and

the ability to be adapted to the new architecture and work

with the components in the new system. Therefore, to

define any software asset as reusable, it should be able to

work with different types of software components in

different systems and environments. These abilities can be

achieved by considering them early in developing the

reusable assets or modifying the existing components to

achieve them. Therefore, three main types of reusable

assets can be involved in the reuse process [18]: normal

asset, reusable asset with internal components, and

reusable asset with market components.

• Normal asset: is a software component developed for

specific function in certain software product meanwhile

the reusability characteristics are not considered during

the development process. This type of software

components is in-house developed software which

includes design and its all internal components.

Moreover, it is required to be portable and interoperable

to work with different systems in different

environments. Therefore, it has to be modified to

achieve the new requirements.

• Reusable Asset with Internal Components: software

components that are developed to be used in different

software systems in the future. It is in-house developed

software which includes the design and all of its internal

components. This type of components possesses the

reusability characteristics, and also allows any

modification might be required for adaptation to the

new system.

• Reusable Asset with Market Components: is reusable

software components imported from external sources. It

is a market resource, which does not allow any

modification might be required. Therefore, any

modification required for adaptation has to be on the

system architecture instead of the component.

Based on the types of the reusable assets, the reuse process

can be performed in two main ways: white box, and black

box. White box reuse is the process of modifying existing

software assets in order to fit the new requirements in the

new system. This process is performed based on the in-

house developed software assets, for both: normal asset to

achieve the new requirements or the reusable assets with

the internal components that might require a modification

for adaptation. Black box reuse is the process of using

existing software products without any modification. The

process can be performed on any type of software asset

that might not need or allow any modification. This

process is compulsory for the reusable assets with market

components, which it does not allow any modification.

Consequently, software reuse care about the ability of the

software assets to achieve the requirements of the new

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 20

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

systems and to be used efficiently. The main objective of

the reuse process is to use the software asset in the new

system, and it does not matter whether it is able to be

modified as much as to achieve the requirements in the

new systems. The modification is required only in the

white box reuse, whereas the black box reuse does not

need or allow any modification. Therefore, the relationship

between reusability and maintainability depends on the

type of software assets and the reuse process, which can be

identified as follow:

Is the reusable software maintainable?

In the white box reuse, software asset has to be

maintainable, which is required to be modified for the new

system’s and environment’s requirements. But, in the black

box reuse, especially the reusable assets with market

components, software asset is not allowed to be modified,

and therefore, it should not be maintainable.

Is the maintainable software reusable?

The main idea of the white box reuse is to modify existing

software asset in order to achieve the new system’s

requirements. Therefore, any software asset has the ability

to be modified to achieve the new system requirements can

be reusable.

4. Modularity

Modularity is an available method to solve a complex

problem, which aims to decompose and integrate all

objects [16]. It is the degree of using independent software

components, so any change in one component has a

minimal impact on other components in the system. This

method concerns about decomposing the system into

manageable components, which allows:

• Understanding each part of the system independently,

instead of understanding the whole system as one part.

• Analyzing a system efficiently by identify which part

of the system requires a modification, instead of

analyzing the whole system at the same time.

• Modifying the system’s components without affecting

other components and identifying the parts that are

affected from the modification efficiently.

• Testing the modified parts instead of testing the whole

system.

Modularity is an important characteristic required in every

task of software maintenance. Therefore, ISO 25010

considered it as sub factor along with analyzability,

modifiability, and testability. However, the total value for

maintainability is not affected in this modification. But the

problem in the maintainability sub characteristics:

analyzability, modifiability, and testability, that they miss

one of their main sub characteristics, which is modularity.

IEEE Standard for Software Quality Metrics indicated that

the quality sub-characteristics are more meaningful to the

technical personnel , it also facilitates objective

communication between them and their managers [28].

Therefore, the quality sub characteristics, analyzability,

modifiability, and testability are meaningless for the

technical personnel, although the modularity value is

presented independently. Consequently, a

miscommunication will occur between technical personnel

and managers.

5. Stability

Modifiability is the degree of modifying software products

efficiently and effectively without any side effects or

affecting the quality of the system. Software modification

affects the behavior of the software components, which

might cause new problems by achieving the intended

objectives. Therefore, software system has to be able to

avoid or reduce any unexpected effects that might arise

from modifications.

However, in order to perform the modification efficiently it

has to be stable. This characteristic was defined as sub

factor of software maintainability along with modifiability

in ISO 9126, which is different from the definition of the

modifiability. Moreover, this indicates that the

modifiability concerns about the ability of software

product to be modified, and it does not matter whether it

affects the other parts of the system or not. ISO 25010

mentioned that the modifiability is a combination of

changeability and stability, and therefore, this

characteristic is removed from the sub characteristics level

of the maintainability factor.

6. Compliance

According to ISO 25010, the compliance sub-

characteristics have been removed. as compliance with

laws and regulations is part of the overall system

requirements, rather than specifically part of software

quality [8]. Following any standard is to conform that

certain level of quality has been achieved.

7. Discussion

This paper discussed changes in software maintainability

from ISO 9126 to ISO 25010. It includes four sub

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 21

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

characteristics, two eliminated (stability and compliance)

and two added (reusability and modularity). The study was

intended to investigate the validity of the relationships

between those sub characteristics and the maintainability

factor. The discussion concluded the following:

Maintainable software can be reusable but the reusable

software might not be maintainable. That is, in black box

reuse, software assets are not required to be modified. The

reusable assets have to be portable and compatible,

whereas, software maintenance intends to make the

software assets portable and compatible. Therefore, the

enhancement of software portability and compatibility are

added values to the reusability, whereas, the portable and

compatible software not should be maintainable.

However, software maintainability represents whether the

software product is able to be modified in order to correct,

enhance, or adapt the software. Software reusability

represents whether the software is able to be used in other

software products, which it does not matter whether it

requires a modification or not. Two types of reusable

software are required to be maintainable in order to fit the

new systems’ requirements, regarding the functionality,

compatibility, and portability issues.

Software modularity is an important characteristic that

significantly affects the maintenance process. It is required

to understand, analyze, modify, and test the software

product. Including the modularity as a sub factor along

with these characteristic do not affect the total value of the

maintainability, but it affects the values of those sub

characteristics. These sub characteristics will be

meaningless, by missing one of their main sub

characteristics.

The importance of stability is not less than the other

characteristics of software modifiability. Where the side

effects caused by software modification might make this

process useless and harmful instead of being useful.

Compliance is only considered as an indicator that the

characteristic of software product were achieved in a

certain level of standard, and it should not completely

satisfy the quality standard.

8. Conclusion and Recommendation

This study discussed the development of software

maintainability characteristic in ISO 9126 and ISO 25010.

The study presented the definition of software

maintainability and its sub characteristics in both standards.

Moreover, discussed the differences between the sub-

characteristics were used to evaluate the maintainability in

both standards, how and why these sub characteristics were

included and excluded from the standards. The results of

the discussion show that the sub characteristics of the

maintainability characteristic were included and excluded

in both versions of ISO subjectively. There is no clear

definition or justification of include and exclude these sub

characteristics.

Consequently, maintainability characteristic was developed

unclearly without any standard base, in both ISO 9126 and

ISO 25010. The ambiguity of developing quality

characteristics and their relationships make the models

confusable, questionable, and consequently debatable.

Therefore, there is a crucial need for a standard base for

developing and decomposing software quality

characteristics, instead of developing new quality models.

At this time only, a new model of software quality can be

developed and achieve its intended objectives to resolve

the debate among software quality models, which is the

main idea of ISO/IEC JTC1 since 1978.

References

[1] ISO/IEC, "IEC 9126-1: Software Engineering-Product

Quality-Part 1: Quality Model," in Geneva, Switzerland:

International Organization for Standardization, ed, 2001.

[2] ISO/IEC, "ISO/IEC TR 9126-2: Software engineering-

software product quality-part 2: External metrics," in

Geneva, Switzerland: International Organization for

Standardization, ed, 2003.

[3] ISO/IEC, "ISO/IEC TR 9126-3 Software engineering-

software product quality-part 3: Internal metrics," in

Geneva, Switzerland: International Organization for

Standardization, ed, 2003.

[4] ISO/IEC, "ISO/IEC DTR 9126-2 Software engineering –

software product quality-part 4: Quality in use metrics," in

Geneva, Switzerland: International Organization for

Standardization, ed, 2001.

[5] B. Kitchenham and S. L. Pfleeger, "Software quality: the

elusive target [special issues section]," Software, IEEE, vol.

13, pp. 12-21, 1996.

[6] H. Al-Kilidar, et al., "The use and usefulness of the

ISO/IEC 9126 quality standard," 2005, p. 7 pp.

[7] A. B. Al-Badareen, et al., "Software Quality Models: A

Comparative Study," in Software Engineering and

Computer Systems, ed: Springer, 2011, pp. 46-55.

[8] ISO/IEC, "Systems and software engineering -- Systems and

software Quality Requirements and Evaluation (SQuaRE) --

System and software quality models " in ISO/IEC 25010,

ed. IEC, 2011.

[9] M. Kernahan, et al., "Extracting Traceability Information

from C# Projects," in WSEAS International Conference on

ENGINEERING EDUCATION, Athens, Greece, 2005.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 22

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[10] S. C. B. d. Souza, et al., "A study of the documentation

essential to software maintenance," presented at the

Proceedings of the 23rd annual international conference on

Design of communication: documenting & designing for

pervasive information, Coventry, United Kingdom, 2005.

[11] U. Vora and N. Sarda, "Framework for evolving systems,"

in 5th WSEAS International Conference on SIGNAL

PROCESSING, ROBOTICS and AUTOMATION (ISPRA

'06), Madrid, Spain,, 2006, pp. 145-150.

[12] S. Das, et al., "Understanding documentation value in

software maintenance," presented at the Proceedings of the

2007 symposium on Computer human interaction for the

management of information technology, Cambridge,

Massachusetts, 2007.

[13] A. H. Mohamed, "Facilitating Tacit-Knowledge Acquisition

within Requirements Engineering," in 10th WSEAS

International Conference on APPLIED COMPUTER

SCIENCE (ACS '10), Iwate Prefectural University, Japan,

2010, pp. 27-32.

[14] E. Burch and K. Hsiang-Jui, "Modeling software

maintenance requests: a case study," in Software

Maintenance, 1997. Proceedings., International Conference

on, 1997, pp. 40-47.

[15] IEEE, "IEEE Standard for Software Maintenance," in IEEE

Std 1219-1998, ed: IEEE, 1998.

[16] A. B. AL-Badareen, et al., "The Impact of Software Quality

on Maintenance Process," International Journal of

Computers, vol. 5, pp. 183-190, 2011.

[17] A. B. AL-Badareen, et al., "Software Quality Evaluation

through Maintenance Processes," in NAUN Conference of

CONTROL, Puerto De La Cruz, Tenerife, Spain, 2010.

[18] A. B. AL-Badareen, et al., "Reusable Software Components

Life Cycle," International Journal of Computers, vol. 5, pp.

191-199, 2011.

[19] P. Mohagheghi and R. Conradi, "An empirical investigation

of software reuse benefits in a large telecom product," ACM

Trans. Softw. Eng. Methodol., vol. 17, pp. 1-31, 2008.

[20] I. PHILIPPOW, "Utilization of Object-Oriented Models," in

WSES International Conference on Multimedia, Internet,

Video Technologies 2001, Malta, 2001.

[21] A. Sharma, et al., "Reusability assessment for software

components," SIGSOFT Softw. Eng. Notes, vol. 34, pp. 1-6,

2009.

[22] W. Frakes and C. Terry, "Software reuse: metrics and

models," ACM Comput. Surv., vol. 28, pp. 415-435, 1996.

[23] J. A. McCall, et al., "Factors in Software Quality," Griffiths

Air Force Base, N.Y. Rome Air Development Center Air

Force Systems Command, 1977.

[24] N. S. Gill, "Reusability issues in component-based

development," SIGSOFT Softw. Eng. Notes, vol. 28, pp. 4-

4, 2003.

[25] C. Luer, "Assessing Module Reusability," in Assessment of

Contemporary Modularization Techniques, 2007. ICSE

Workshops ACoM '07. First International Workshop on,

2007, pp. 7-7.

[26] F. Haiguang, "Modeling and Analysis for Educational

Software Quality Hierarchy Triangle," in Web-based

Learning, 2008. ICWL 2008. Seventh International

Conference on, 2008, pp. 14-18.

[27] J. J. E. Gaffney, "Metrics in software quality assurance,"

presented at the Proceedings of the ACM '81 conference,

1981.

[28] IEEE, "IEEE Standard for a Software Quality Metrics

Methodology," in IEEE Std 1061-1998 (R2009), ed, 1998,

p. i.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 23

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

