
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331624373

MGA-TSP: Modernized Genetic Algorithm for the Traveling Salesman Problem

Article  in  International Journal of Reasoning-based Intelligent Systems · January 2019

DOI: 10.1504/IJRIS.2019.10019776

CITATIONS

0
READS

515

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Coronavirus herd immunity optimizer (CHIO) View project

EEG Channel Selection using Metaheuristic Algorithms View project

Ra'ed M. Al-Khatib

Yarmouk University

25 PUBLICATIONS   117 CITATIONS   

SEE PROFILE

Mohammed Azmi Al-Betar

Ajman University

221 PUBLICATIONS   5,111 CITATIONS   

SEE PROFILE

Mohammed a. Awadallah

Al-Aqsa University

98 PUBLICATIONS   2,007 CITATIONS   

SEE PROFILE

Khalid Nahar

Yarmouk University

60 PUBLICATIONS   307 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Khalid Nahar on 30 December 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/331624373_MGA-TSP_Modernized_Genetic_Algorithm_for_the_Traveling_Salesman_Problem?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/331624373_MGA-TSP_Modernized_Genetic_Algorithm_for_the_Traveling_Salesman_Problem?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Coronavirus-herd-immunity-optimizer-CHIO?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/EEG-Channel-Selection-using-Metaheuristic-Algorithms?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raed-M-Al-Khatib?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raed-M-Al-Khatib?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Yarmouk_University?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raed-M-Al-Khatib?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Al-Betar?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Al-Betar?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ajman-University?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Al-Betar?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Awadallah-2?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Awadallah-2?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Al-Aqsa_University?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Awadallah-2?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalid-Nahar?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalid-Nahar?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Yarmouk_University?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalid-Nahar?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalid-Nahar?enrichId=rgreq-1d104386d1c3c890ab0a4e972195fe90-XXX&enrichSource=Y292ZXJQYWdlOzMzMTYyNDM3MztBUzo4NDE3OTE2NzQ4MDIxNzdAMTU3NzcxMDE4Mzc4Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Int. J. Reasoning-based Intelligent Systems, Vol. 11, No. 3, 2019 215

MGA-TSP: modernised genetic algorithm for the
travelling salesman problem

Ra’ed M. Al-Khatib*
Department of Computer Sciences,
Faculty of Information Technology and Computer Sciences,
Yarmouk University,
Irbid-21163, Jordan
Email: raed.m.alkhatib@yu.edu.jo
*Corresponding author

Mohammed Azmi Al-Betar
Department of Information Technology,
Al-Huson University College,
Al-Balqa Applied University (BAU),
P.O. Box 50, Al-Huson,
Irbid, Jordan
Email: mohbetar@bau.edu.jo

Mohammed A. Awadallah
Department of Computer Science,
Al-Aqsa University,
P.O. Box 4051, Gaza, Palestine
Email: ma.awadallah@alaqsa.edu.ps

Khalid M.O. Nahar
Department of Computer Sciences,
Faculty of Information Technology and Computer Sciences,
Yarmouk University,
Irbid-21163, Jordan
Email: khalids@yu.edu.jo

Mohammed M. Abu Shquier
Faculty of Computer Science and Information Technology,
Jerash University,
Jerash, Jordan
Email: shquier@jpu.edu.jo

Ahmad M. Manasrah
Network and Information Security Department,
Faculty of Information Technology and Computer Sciences,
Yarmouk University,
Irbid-21163, Jordan
Email: ahmad.a@yu.edu.jo

Ahmad Bany Doumi
Department of Computer Sciences,
Faculty of Information Technology and Computer Sciences,
Yarmouk University,
Irbid-21163, Jordan
Email: ahmad.domi.usm@gmail.com

Abstract: This paper proposes a new enhanced algorithm called modernised genetic algorithm
for solving the travelling salesman problem (MGA-TSP). Recently, the most successful
evolutionary algorithm used for TSP problem, is GA algorithm. The main obstacles for GA
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is building its initial population. Therefore, in this paper, three neighbourhood structures
(inverse, insert, and swap) along with 2-opt is utilised to build strong initial population.
Additionally, the main operators (i.e., crossover and mutation) of GA during the generation
process are also enhanced for TSP. Therefore, powerful crossover operator called EAX is
utilised in the proposed MGA-TSP to enhance its convergence. For validation purpose, we
used TSP datasets, range from 150 to 33,810 cities. Initially, the impact of each neighbouring
structure on the performance of MGA-TSP is studied. In conclusion, MGA-TSP achieved the
best results. For comparative evaluation. MGA-TSP is able to outperform six comparative
methods in almost all TSP instances used.

Keywords: travelling salesman problem; optimisation; genetic algorithm; neighbouring
operators.
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1 Introduction

Travelling salesman problem (TSP) is traditional
combinatorial optimisation problem belongs to NP-hard
class in almost all of its variations (Michael and David,
1979). TSP is tackled by finding an optimal tour by means
of visiting a given cities each of which visited exactly once
and the salesman returns to the initial city as minimum
distance as possible (Dorigo and Gambardella, 1997;
Nagata and Kobayashi, 2013). The complexity of TSP is
normally increased when the number of cities to be visited
is increased (Helsgaun, 2000). TSP are normally used as a
benchmark problem to evaluate the performance of newly
established methods. TSP is very useful for real-world
applications employed in traffic and military domains
(Yoon and Cho, 2011; Starkey et al., 2016). Therefore,
the attention of the researchers in the optimisation domain
tends to utilise the approximation mechanisms to tackle
TSP problems (Albayrak and Allahverdi, 2011).

Many methods either exact or approximation solutions,
have been introduced for TSP. Although, exact methods
can be efficiently works for small scaled TSP, they are not
workable for the large scaled TSP problem due to the cost
of the computational time required (Helsgaun, 2000; Nagata
and Kobayashi, 2013). Several exact methods introduced
for TSP such that ‘concorde’ solver, which efficiently
tackled TSP up to 1,000 cities (Helsgaun, 2000; Applegate
et al., 2011; Hoos and Stützle, 2014). The attention of the
TSP-solver have been paid to the approximation methods
due to their strength in finding a quasi-optimal solution
for large scaled TSP with a reasonable computational time
(Matai et al., 2010). A comprehensive and exhaustive
survey of the approximation methods used for TSP problem
are shown in Johnson and McGeoch (1997).

The approximation methods for TSP can be categorised
into heuristic and metaheuristic methods. Heuristic methods
are considered as a problem-dependent approach, which
construct a solution for TSP from scratch, where their
solution quality is not always taking into account (Geem
et al., 2001; Helsgaun, 2000). Heuristic methods are
normally used for several optimisation problems as a
general optimisation framework. They are utilising learning
operators control by given parameters to efficiently
explore the problem search space and exploit the
accumulative search (Pourhassan and Neumann, 2015).
The metaheuristic methods are conventionally categorised
into local search-based algorithms, evolutionary-based
algorithms and swarm-based algorithms (Chen and Chien,
2011; Krause et al., 2013; Kong et al., 2006). Local
search-based algorithms begins with random solution
normally constructed by a heuristic method. They iteratively
modify that solution using neighbouring mechanisms until a
local optimal solution, which is normally in the same search
space region as initial one is reached. Local search-based

methods have been adapted for TSP including: Tabu
search (Gendreau et al., 1998; Basu et al., 2017),
simulated annealing (SA) (Bayram and Şahin, 2013),
variable neighbourhood search (Mladenović et al., 2013).
The evolutionary-based algorithms (EAs), however, begins
with a set of random solutions called population. Generation
after generation, new solutions are generated using
recombination and mutation operators. The new offspring
population normally replaced the parent population, if
they are better. This evolution process will continued
until stagnation point is reached. The popular EAs solved
TSP include genetic algorithm (GA) (Maity et al., 2016;
Changdar et al., 2014) and harmony search algorithm
(HSA) (Wang et al., 2016). The swarm-based algorithms
imitate a part of social living of some animals. They
are initiated with a set of solution called swarm. In each
iteration, these swarms are interact in a particular learning
mechanism using self-organisation and decentralised control
to come up with a new swarms. The most popular
swarm-based algorithms used for TSP are ant colony
optimiser (Liu et al., 2017; Kalyani, 2015), particle swarm
optimisation (PSO) (Anantathanavit and Munlin, 2016),
artificial bee colony (ABC) (Li et al., 2012), ant colony
optimisation (ACO) algorithm (Chen et al., 2012), Bat
algorithm (BA) (Saji and Riffi, 2016), and intelligent water
drop (IWD) algorithm (Ouaarab et al., 2014; Alijla et al.,
2014).

The most popular ground algorithm for TSP is GA,
which is the focal point of the present paper (Zhao et al.,
2008; Yi and Fang, 2010; Matei and Pop, 2010; Vahdati
et al., 2010; Nagata and Kobayashi, 2013; Tsai et al., 2014;
Senthilkumar and Prasanna, 2014; Thanh et al., 2015; Maity
et al., 2016; Lin et al., 2016; Alipour et al., 2017). The
studied of GA in the chronic shortcomings of GA are
twofold:

1 The tendency of exploring several search space region
at the same time but without deep search in each
region.

2 Since it deals with a population of individuals, the
required computational time is high.

Therefore, the TSP researchers turned their attention
to employ local search-based algorithms due to their
capabilities in local exploitation. However, up to now, the
best recorded results achieved for TSP problem is obtained
by GA (Nagata and Kobayashi, 2013). In this paper, GA is
tailored to TSP with new neighbouring operators (inverse,
insert, and swap), which are used to modernised the GA
algorithm. This enhancement to GA is done in order to
overcome the above two fold shortcomings of initial GA
algorithm. Basically, the main stages of the GA-based
algorithm for TSP, are selection, crossover, and mutation
operators.
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There are many GA-based algorithms have been
developed for TSP. The research focus on modifying
a new selection, crossover, or mutation operators to be
applicable for TSP. For example Nagata and Kobayashi
(2013), developed GA for TSP where a new crossover
called EAX-crossover is introduced. Furthermore, a
pheromone-based crossover operator with a local-search
operator work as a mutation operator to solve TSP
(Zhao et al., 2008). An efficient algorithm to reduce the
computation time of GA is proposed in Tsai et al. (2014).
Another improved GA is also proposed for TSP in which
a new mutation operator is produced by Thanh et al.
(2015). There are many other GA-based TSP have been also
proposed as surveyed in Vaishnav et al. (2017).

In this paper, a new local search mechanism based on
three neighbourhood structure (inverse, insert, and swap)
along with 2-opt neighbourhood procedure is proposed to
generate the initial population for GA. Note that one of
the main obstacles for GA is building its initial population.
When GA initiated with a strong initial population, the
convergence rate and the diversity aspect will be more
stronger. In order to validate the performance of the
proposed algorithm, three TSP datasets (i.e., TSPLIB,
national TSP, and VLSI TSP) of different complexities
and sizes, are used including 39 TSP instances. The size
range of the TSP instances are from 150 to 33,810 cities.
For evaluation purposes, the impact of each neighbouring
operator on the performance of the proposed algorithm is
studied. Consequently, the GA with the three neighbouring
operators achieved the best results. For comparative
evaluation, the results obtained by our proposed method is
compared with those obtained by six well-regard methods
using the same TSP instances. The proposed method is able
to outperform other comparative methods in almost all TSP
instances used.

The remaining parts of this paper is organised as
follows: The definition and formulation of TSP problem are
discussed and the fundamental GA is also overviewed in
Section 2. The proposed method with the new neighbouring
operators are discussed in Section 3. The experimental
results and discussions are analysed in Section 4. Finally,
the conclusion and possible future research is discussed in
Section 5.

2 Research background

In order to make a self-exploratory paper, the problem of
TSP is initially modeled in terms of optimisation problem
in Subsection 2.1. Also, the GA and its basic form is also
discussed as the solver for TSP problem, suggested in the
present work (please see Subsection 2.2).

2.1 Travelling salesman problem

The TSP is one of the most popular NP-hard combinatorial
optimisation problems used to find the shortest closed tour
that visits each city one and only one. TSP traditionally

represented as a bi-directed graph G = (V,A), where V is
set of vertices (i.e., cities), and A is a set or arcs (i.e., the
connections between cities). The cost matrix D of size V ×
V is used to store the distance between all pairs of cities,
where each element dij represents the distance between the
two cities vi, and vj . Generally, the cost matrix can be
classified to symmetric or asymmetric. In the symmetric
case, the distance between cities are independent of the
direction of traversing the arcs (dij = dji), whereas, dij ̸=
dji in the asymmetric case. aij is one if the arc between
the two cities vi and vj in the tour, and zero otherwise.

Mathematically, the objective function of the TSP can
be formulated as follows:

z = min
∑
i

∑
j

dij .aij , (1)

where z is the total closed tour length; dij is the distance
between the two cities vi and vj ; aij is the existence of the
arc between the two cities in the tour.

2.2 Genetic algorithm

GA was developed by Holland (1975), to mimic the
natural phenomenon of Darwin Evolution Theory and based
on a well-known principle in evolution called ‘survival
of the fittest’. GA starts with many solutions for many
combinatorial optimisation problems, each of which is a
vector of decision variables and each decision variable has
a specific range of values (Goldberg, 1989; Holland, 1992).
In the context of evolution, the set of solutions is equivalent
to population, each solution is analogous to chromosome,
each decision variable to gene, and each value of the
decision variables to allele.

In order to apply a successful GA to any optimisation
problem, the objective function and problem representation
have to be first properly adjusted together with parameter
tuning. Typically, GA has a set of parameters including the
size of the population (Ps), the number of generation (Pn),
the crossover rate (Pc), and the mutation rate (Pm). In order
to build an efficient and robust GA, the parameters settings
to each optimisation problem have to be studied well.

Algorithm 1 shows the high-level schematic
pseudo-code of GA, which starts with a population of
candidate solutions X, where X is an augmented matrix of
size Ps ×N and N is the number of decision variables
in each solution. Initially, the population X is filled with
random candidate solutions across the problem search
space, e.g., X = {x1, x2, . . . , xPs}. Each candidate solution
xi, is evaluated based on an objective function. The
improvement loop in GA (see Algorithm 1, Line 3 to Line
9), repeats the following steps until a termination criterion
is met: selecting the parents (new population X′) that will
be used to generate the next population, which will pairwise
crossover with a probability of Pc to come up with a new
population X′′. Afterwards, each pairwise solution will be
checked for whether it should be mutated with probability
Pm to come up with X′′′, the new population will again
be evaluated and the X′′′ will be substituted with the
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population X based on such selection method. This is done
to filter the offsprings as fit or not. This process will be
repeated several times trying to reach an optimal solution.

Algorithm 1 Genetic algorithm

MGA-TSP 5

Algorithm 1 Genetic Algorithm
1: X← Generate Initital Population
2: Evaluate(X)
3: while (Stopping Criterion is not met) do
4: X′ ← Selection(X)
5: X′′ ← Crossover (X′)
6: X′′′ ← Mutation (X′′)
7: Evaluate(X′′′)
8: X← Replacement(X′′′ ∪ X)
9: end while

to build an efficient and robust GA, the parameters settings
to each optimization problem have to be studied well.

Algorithm 1 shows the high-level schematic
pseudo-code of GA, which starts with a population of
candidate solutions X, where X is an augmented matrix of
size Ps ×N and N is the number of decision variables
in each solution. Initially, the population X is filled with
random candidate solutions across the problem search
space, e.g., X = {x1, x2, . . . , xPs}. Each candidate solution
xi, is evaluated based on an objective function. The
improvement loop in GA (see Algorithm 1, Line 3 to Line
9), repeats the following steps until a termination criterion
is met: selecting the parents (new population X′) that will
be used to generate the next population, which will pairwise
crossover with a probability of Pc to come up with a new
population X′′. Afterwards, each pairwise solution will be
checked for whether it should be mutated with probability
Pm to come up with X′′′, the new population will again
be evaluated and the X′′′ will be substituted with the
population X based on such selection method. This is done
to filter the offsprings as fit or not. This process will be
repeated several times trying to reach an optimal solution.

3 Proposed MGA-TSP algorithm

In this section, the proposed modernized genetic algorithm
for solving the TSP problem (MGA-TSP), is discussed in
details. The main focus of this paper is on the way of
generating the initial solution for GA. The initial population
is build based on the three proposed neighboring operators
discussed in the following sections as well as the original
2-opt neighboring procedure. The main motivation behind
this idea is to provide a very good individuals for GA
to enhance its capability in finding the global optima.
The flowchart of the proposed method is given in Fig. 1.
The proposed method is initiated by a set of individuals
produced by NOpt of MGA-TSP operators. Generation
after generation, proportionable selection, EAX crossover,
simple mutation and greedy replacement operators are
used in the improvement loop. The proposed algorithm
is terminated after a set of generations determined by
generation number. The output of the proposed method is
an optimal tour for TSP. The following subsection will
thoroughly discuss each step of the proposed method.

Figure 1 Flowchart of GA algorithm.

3.1 Initialize TSP and GA parameters

For TSP problem, each individual in GA algorithm is
represented as a chromosome x = (x1, x2, . . . , xN ) of N
cities. The value range of each gene indexed by xi is the
city label xi ∈ (1, 2, . . . , N). Note that the cities in each
individual are permutated. This means that each city will
appear in each individual one and only one time. This
solution representation is known as path representation.
Each individual will be evaluated using the fitness function
formulated in equation (1).

For GA, its parameters will be also initialized in this
step such as crossover rate (Pc) and mutation rate (Pm).
the proportional selection scheme is used to utilize the
survival of the fittest principle of natural selection. Also the
neighboring procedures in GA will be used based on Nr

rate, which reflect the usage rate of neighboring function
Ni.

3.2 Building Initial Population

The focal point of this paper is the process of how to
build the initial population for TSP. The initial population
is normally built based on a specific random mechanism
as many as population size. As conventionally known, the
search space compromise the set of possible solutions. In
TSP case, the search space of N citeps has N ! possible
solutions. It is worth mentioning that the success of the
GA often depends on the quality and the distribution of the
initial population.

In our proposed method, the initial population for TSP,
is generated using five different neighborhood operators,
The process of how these operators work are based on
the neighboring rate Nr. Algorithm 2 shows how these
operators collaborate to generate the initial population. The
process of each neighboring operator is next discussed.
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cities. The value range of each gene indexed by xi is the
city label xi ∈ (1, 2, . . . , N). Note that the cities in each
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appear in each individual one and only one time. This
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The focal point of this paper is the process of how to
build the initial population for TSP. The initial population
is normally built based on a specific random mechanism
as many as population size. As conventionally known, the
search space compromise the set of possible solutions. In
TSP case, the search space of N citeps has N ! possible
solutions. It is worth mentioning that the success of the
GA often depends on the quality and the distribution of the
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Algorithm 2 Generate Initial Population
1: for i = 1 to Pop size do
2: if rand < Nr then
3: xi = N1 2-opt() ◃ { See Algorithm 3.}
4: else
5: xi1 = N2 Inverse()
6: xi2 = N3 Insert(xi1)
7: xi3 = N4 Swap(xi2)
8: xi = Short tour(xi1, xi2, xi3)
9: end if
10: end for

N1 2-opt Operator:
This algorithm is widely used in the domain of TSP
initially established in (Johnson and McGeoch, 1997).
It is normally used in the process of generating the
initial population of TSP with GA. As pseudocoded
in (Nagata and Kobayashi, 2013), the 2-opt operator
is provided in Algorithm 3. It generates each
individual using local search strategy in which the
possible move in 2-opt can be formulated as a
4-tuple of vertices. In 2-opt for instance, the edge
E1,2 = (v1, v2) and the edge E3,4 = (v3, v4) will
be removed and reconstructed as the edge E1,3 =
(v1, v3) and the edge E2,4 = (v2, v4). In practice,
Algorithm 3 established in (Nagata and Kobayashi,
2013), illustrates how the 2-opt works. It works as
a local search with best improvement strategies on
several trials of its neighboring vertices.

Algorithm 3 Procedure Local-Search() or 2-opt()
1: Randomly generate a solution H := {1,...,N};
2: repeat
3: Randomly select v1 ∈ H;
4: for i:= 0 to 1 do
5: v2 := Neighbor[v1][i];
6: for j:= 1 to trial do
7: v3 := near[v1][j]; ◃ {trial < N}
8: if -d(v1, v2) + d(v1, v3)≥ 0 then break;
9: v4 := Neighbor[v3][(i + 1) mod 2];
10: if (−d(v1, v2)− d(v3, v4) + d(v1, v3) + d(v2, v4) < 0)

then
11: Update the current tour and H . Go to line 3;
12: end if
13: end for
14: end for
15: until becomes empty

N2 Inverse operator:
The function Inverse (x, i, j) will inverse the cities
between the index i and index j as follows:
x′ = (. . . , x′

i = xj , x
′
i+1 = xj−1, . . . , x

′
i+k =

xj−k, . . . , x
′
j = xi, . . .). A visual representation of

inverse process is provided in Fig. 2. Two edges are
exchanged by inverse operator for TSP.

N3 Insert operator:
The function Insert(x, i, j) will shift the city in index
j to index i consecutively as follows: x′ = (. . . , x′

i =

Figure 2 Inverse Neighbourhood Structure.

xj , x
′
i+1 = xi, x

′
i+2 = xi+1, . . . , x

′
j = xj−1, . . .). A

visual representation of insert process is provided in
Fig. 3.

Figure 3 Insert Neighbourhood Structure.

N4 Swap operator:
The function Swap(x, i, j) will swap the two cities
in the index i and index j as follows: x′

i = xj and
x′
j = xi. A visual representation of swap process is

provided in Fig. 4.

Figure 4 Swap Neighbourhood Structure.

3.3 Selection operator

In this step, the fittest solutions are selected from the
population to generate the next generation. There are
several selection mechanism. In this paper, the proportional
selection method established in the original GA (Holland,
1975) is used. In proportional selection method, the fittest
individuals in the population have higher chances to be
selected to generate the next population than the other
individuals.

3.4 Crossover operator (EAX)

EAX is an efficient TSP-based crossover operator widely
used by several GA-based TSP studies (Nagata and
Kobayashi, 2013; Sanches et al., 2017a,b). Simply EAX
initially combines two parents stored in a population
randomly selected into a single graph G. These two
parent graphs are merged together. Absolutely, there are
several redundant edges should be modified. Therefore, the
AB-cycles in the merged graph are defined in (Sanches
et al., 2017a), as: one edge is taken from first parent
graph (say A); then another edge is taken from the
second parent graph (say B) alternatively and continually

In our proposed method, the initial population for TSP,
is generated using five different neighbourhood operators,
The process of how these operators work are based on
the neighbouring rate Nr. Algorithm 2 shows how these
operators collaborate to generate the initial population. The
process of each neighbouring operator is next discussed.

N1 – 2-opt operator

This algorithm is widely used in the domain of TSP initially
established in Johnson and McGeoch (1997). It is normally
used in the process of generating the initial population of
TSP with GA. As pseudocoded in Nagata and Kobayashi
(2013), the 2-opt operator is provided in Algorithm 3. It
generates each individual using local search strategy in
which the possible move in 2-opt can be formulated as a
4-tuple of vertices. In 2-opt for instance, the edge E1,2 =
(v1, v2) and the edge E3,4 = (v3, v4) will be removed and
reconstructed as the edge E1,3 = (v1, v3) and the edge
E2,4 = (v2, v4). In practice, Algorithm 3 established in
Nagata and Kobayashi (2013), illustrates how the 2-opt
works. It works as a local search with best improvement
strategies on several trials of its neighbouring vertices.
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Algorithm 3 Procedure local-search() or 2-opt()
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1: for i = 1 to Pop size do
2: if rand < Nr then
3: xi = N1 2-opt() ◃ { See Algorithm 3.}
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Algorithm 3 established in (Nagata and Kobayashi,
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a local search with best improvement strategies on
several trials of its neighbouring vertices.
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1: Randomly generate a solution H := {1,...,N};
2: repeat
3: Randomly select v1 ∈ H;
4: for i:= 0 to 1 do
5: v2 := Neighbour[v1][i];
6: for j:= 1 to trial do
7: v3 := near[v1][j]; ◃ {trial < N}
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The function Inverse (x, i, j) will inverse the cities
between the index i and index j as follows:
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N4 Swap operator:
The function Swap(x, i, j) will swap the two cities
in the index i and index j as follows: x′

i = xj and
x′
j = xi. A visual representation of swap process is

provided in Fig. 4.

Figure 4 Swap Neighbourhood Structure.

3.3 Selection operator

In this step, the fittest solutions are selected from the
population to generate the next generation. There are
several selection mechanism. In this paper, the proportional
selection method established in the original GA (Holland,
1975) is used. In proportional selection method, the fittest
individuals in the population have higher chances to be
selected to generate the next population than the other
individuals.

3.4 Crossover operator (EAX)

EAX is an efficient TSP-based crossover operator widely
used by several GA-based TSP studies (Nagata and
Kobayashi, 2013; Sanches et al., 2017a,b). Simply EAX
initially combines two parents stored in a population
randomly selected into a single graph G. These two
parent graphs are merged together. Absolutely, there are
several redundant edges should be modified. Therefore, the
AB-cycles in the merged graph are defined in (Sanches
et al., 2017a), as: one edge is taken from first parent
graph (say A); then another edge is taken from the
second parent graph (say B) alternatively and continually

N2 – inverse operator

The function inverse (x, i, j) will inverse the cities between
the index i and index j as follows: x′ = (. . . , x′

i =
xj , x

′
i+1 = xj−1, . . . , x

′
i+k = xj−k, . . . , x

′
j = xi, . . .). A

visual representation of inverse process is provided in
Figure 2. Two edges are exchanged by inverse operator for
TSP.

Figure 2 Inverse neighbourhood structure (see online version
for colours)

N3 – insert operator

The function insert(x, i, j) will shift the city in index
j to index i consecutively as follows: x′ = (. . . , x′

i =
xj , x

′
i+1 = xi, x

′
i+2 = xi+1, . . . , x

′
j = xj−1, . . .). A visual

representation of insert process is provided in Figure 3.

Figure 3 Insert neighbourhood structure (see online version
for colours)

N4 – swap operator

The function swap (x, i, j) will swap the two cities in
the index i and index j as follows: x′

i = xj and x′
j =

xi. A visual representation of swap process is provided in
Figure 4.

Figure 4 Swap neighbourhood structure (see online version
for colours)

3.3 Selection operator

In this step, the fittest solutions are selected from the
population to generate the next generation. There are
several selection mechanism. In this paper, the proportional
selection method established in the original GA (Holland,
1975) is used. In proportional selection method, the fittest
individuals in the population have higher chances to be
selected to generate the next population than the other
individuals.

3.4 Crossover operator (EAX)

EAX is an efficient TSP-based crossover operator widely
used by several GA-based TSP studies (Nagata and
Kobayashi, 2013; Sanches et al., 2017a, 2017b). Simply
EAX initially combines two parents stored in a population
randomly selected into a single graph G. These two
parent graphs are merged together. Absolutely, there are
several redundant edges should be modified. Therefore, the
AB-cycles in the merged graph are defined in Sanches
et al. (2017a), as: one edge is taken from first parent
graph (say A); then another edge is taken from the
second parent graph (say B) alternatively and continually
(a-b-a-b-a-. . . -a-b). Note that each graph G can be splitted
into set of AB-cycles. In AB-cycle, the E-set is the
number of AB-cycles generated, which will be used to
cut one parent into subcircuits. These subcircuits are then
combined using greedy criteria depend on the Hamiltonian
cycle aspects in which the circuit of the shorter edge
and not in both parents (A and B) will be considered.
Further discussion about EAX can be found in Nagata and
Kobayashi (2013) and Sanches et al. (2017a).

3.5 Mutation operator

The mutation operator is normally worked after the
crossover operator to preserve the diversity during the
search. This operator will improve the ability of GA to find
the optimal solution. The main benefit of this operator is
that it enables the GA to avoid the premature convergence
situation (Holland, 1975; Alipour et al., 2017). For TSP,
the simple mutation operator is used where the positions of
two cities are selected and their position will be swapped.
Normally, this operator is controlled by the mutation rate
(Pm), which is used with a small value.
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3.6 Evaluation and replacement operators

The proposed MGA-TSP algorithm calculate the objective
function for each individual. The fittest generated
individuals will replace the others in the population, if
better.

3.7 Termination condition

The maximum number of iterations is used as a termination
criteria for the proposed GA-based algorithm. The output
of the the proposed method will be the individual with the
best lowest objective function value.

4 Experimental results and discussion

In this section, a full description is reported for the
experimental and tested results that are obtained using
the proposed MGA-TSP algorithm. A comparison study is
presented to show the superior of our proposed algorithm,
which proves its outperformance against the obtained
results of other existing TSP algorithms in the literature.
Basically, tested dataset and evaluation metrics are fully
explained in the next subsection, before discussing the
experimental results.

The datasets for testing our proposed algorithms, are
carefully selected from three well-known benchmark sets,
which are TSP:TSPLIB, national TSP, and VLSI TSP, as
seen in Table 1. These datasets are different in terms of
number of cities and complexity. The proposed MGA-TSP
algorithm was tested on 39 instances that are chosen from
the main benchmark datasets.

4.1 Effect the Neighbouring operators on performance
of proposed MGA-TSP method

In this section, the effect of the employed three
neighbouring operators (inverse, insert, swap), on
the performance of proposed MGA-TSP method, are
thoroughly studied. Due to the fact that the initial
population is strongly generated based on these three
proposed neighbouring operators along with 2-opt
neighbouring operator. The validity of these three operators
are tested using eight versions of proposed method
abbreviated in Table 2. These eight variations represents
the all possible combinations of the GA-based TSP with
the three neighbouring operators.

Each variation of the proposed method is experimented
with all TSP instances. The results obtained by each
variation are summarised in Table 3. The results are
summarised in terms of 10 runs executed for each TSP
instance. Note that the ‘OPT (BKS)’ column refers to the
known optimal solution for each TSP instance. The best
results from each variant for each TSP instance are highlited
in ital font. It is worthy mentioning that the result of the
first 18 TSP instances are omitted from the table because
all variations of the proposed method are able to obtain the

best known results. Therefore the table recorders results of
the other 22 more complicated TSP instances.

Table 1 The datasets of used TSP instances

Instance Instance General description/
number name comment
1 Ch150 150 city problem (churritz)
2 Kroa150 150-city problem (Krolak/Felts/Nelson)
3 Krob150 150-city problem B (Krolak/Felts/Nelson)
4 Pr152 152-city problem (Padberg/Rinaldi)
5 U159 Drilling problem (Reinelt)
6 Rat195 Rattled grid (Pulleyblank)
7 D198 Drilling problem (Reinelt)
8 Kroa200 200 city problem A (Krolak/Felts/Nelson)
9 Krob200 200 city problem B (Krolak/Felts/Nelson)
10 Ts225 225 city problem (Juenger)
11 Pr226 226 city problem (Padberg/Rinaldi)
12 Gil262 262 city problem (Gillet/Johnson)
13 Pr264 264 city problem (Padberg/Rinaldi)
14 Pr299 299 city problem (Padberg/Rinaldi)
15 Lin318 318 city problem (Lin/Kernighan)
16 Rd400 400 city random TSP(Reinelt)
17 Fl417 Drilling problem (Reinelt)
18 Pr439 439 city problem (Padberg/Rinaldi)
19 Pcb442 Drilling problem (Groetschel)
20 U574 Drilling problem (Reinelt)
21 Rat575 Rattled grid (Pulleyblank)
22 U724 Drilling problem (Reinelt)
23 Rat783 Rattled grid (Pulleyblank)
24 Pr1002 1,002 city problem (Padberg/Rinaldi)
25 Pcb1173 Drilling problem (Juenger/Reinelt)
26 D1291 Drilling problem (Reinelt)
27 Rl1323 1,323 city TSP (Reinelt)
28 Fl1400 Drilling problem (Reinelt)
29 D1655 Drilling problem (Reinelt)
30 Vm1748 1,784 city problem (Reinelt)
31 U2319 Drilling problem (Reinelt)
32 Pcb3038 Drilling problem (Junger/Reinelt)
33 Fnl4461 Die 5 neuen Laender Deutschlands

(ExDDR) (Bachem/Wottawa)
34 Rl5934 5,934 city TSP (Reinelt)
35 Pla7397 Programmed logic array (Johnson)
36 Usa13509 Cities with pop. at least 500

in the continental US
37 Brd14051 BR Deutschland in den Grenzen

von 1989 (Bachem/Wottawa)
38 D18512 Bundesrepublik Deutschland (Bachem)
39 Pla33810 Programmed logic array (Johnson)
Notes: TSP: TSPLIB url: http://elib.zib.de/pub/mp-testdata/

tsp/tsplib/tsp/.
National TSP url: http://www.math.uwaterloo.ca/tsp/
world/countries.html
VLSI datasets url: http://www.math.uwaterloo.ca/tsp/
vlsi/summary.html

Table 2 The variations of the proposed MGA-TSP methods using
three neighbouring operators (inverse, insert, swap)

Key The proposed MGA-TSP variations
M1 MGA-GA with inverse, insert, swap optrs.
M2 MGA-GA without inverse, insert, swap optrs.
M3 MGA-GA with inverse operator only
M4 MGA-GA with insert operator only
M5 MGA-GA with swap operator only
M6 MGA-GA with inverse and insert operators
M7 MGA-GA with inverse and swap operators
M8 MGA-GA with insert and swap operators
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Table 3 The results of the eight variations of our proposed MGA-TSP method for 22 TSP instances

S/N Instance OPT(BKS) M1 M2 M3 M4
18 Pr439 107,217.00 107,217.00 107,218.50 107,217.50 107,218.00
19 Pcb442 50,778.00 50,778.00 50,778.00 50,778.00 50,778.00
20 U574 36,905.00 36,905.00 36,905.00 36,905.00 36,905.00
21 Rat575 6,773.00 6,773.00 6,773.10 6,773.00 6,773.00
22 U724 41,910.00 41,910.00 41,911.20 41,910.60 41,910.60
23 Rat783 8,806.00 8,806.00 8,806.00 8,806.00 8,806.00
24 Pr1002 259,045.00 259,045.00 259,045.00 259,045.00 259,046.70
25 Pcb1173 56,892.00 56,892.00 56,892.50 56,892.10 56,893.10
26 D1291 50,801.00 50,801.00 50,801.00 50,801.00 50,801.00
27 Rl1323 270,199.00 270,199.00 270,201.70 270,229.90 270,203.50
28 Fl1400 20,127.00 20,130.70 20,134.40 20,140.40 20,139.80
29 D1655 62,128.00 62,129.30 62,132.30 62,129.20 62,131.40
30 Vm1748 336,556.00 336,556.00 336,558.40 336,556.00 336,559.20
31 U2319 234,256.00 234,346.80 234,363.20 234,361.50 234,363.20
32 Pcb3038 137,694.00 137,694.00 137,694.00 137,695.00 137,695.00
33 Fnl4461 182,566.00 182,568.70 182,569.50 182,571.40 182,568.30
34 Rl5934 556,045.00 556,082.10 556,295.80 556,187.10 556,239.30
35 Pla7397 23,260,728.00 23,262,643.40 23,263,644.80 23,263,180.10 23,264,915.60
36 Usa13509 19,982,859.00 19,983,654.00 19,983,593.80 19,983,454.70 19,984,011.60
37 Brd14051 469,385.00 469,391.30 469,393.90 469,393.10 469,391.60
38 D18512 645,238.00 645,248.40 645,248.50 645,251.00 645,252.20
39 Pla33810 66,048,945.00 66,067,277.50 66,068,408.70 66,070,564.20 66,068,696.40
S/N Instance OPT(BKS) M5 M6 M7 M8
18 Pr439 107,217.00 107,218.00 107,217.50 107,219.50 107,218.00
19 Pcb442 50,778.00 50,778.00 50,778.00 50,778.00 50,778.00
20 U574 36,905.00 36,905.00 36,905.00 36,905.00 36,905.00
21 Rat575 6,773.00 6,773.10 6,773.00 6,773.00 6,773.10
22 U724 41,910.00 41,910.60 41,910.60 41,911.20 41,910.60
23 Rat783 8,806.00 8,806.00 8,806.00 8,806.00 8,806.00
24 Pr1002 259,045.00 259,049.70 259,045.00 259,045.00 259,045.00
25 Pcb1173 56,892.00 56,892.10 56,892.10 56,892.00 56,892.20
26 D1291 50,801.00 50,805.10 50,801.00 50,801.00 50,801.00
27 Rl1323 270,199.00 270,201.70 270,200.50 270,199.00 270,203.20
28 Fl1400 20,127.00 20,130.80 20,138.20 20,142.30 20,134.90
29 D1655 62,128.00 62,130.80 62,131.00 62,233.10 62,183.60
30 Vm1748 336,556.00 336,557.20 336,567.50 336,556.00 336,556.00
31 U2319 234,256.00 234,346.80 234,355.00 234,355.00 234,355.00
32 Pcb3038 137,694.00 137,694.00 137,694.50 137,695.70 137,694.00
33 Fnl4461 182,566.00 182,570.70 182,571.20 182,570.10 182,570.40
34 Rl5934 556,045.00 556,176.00 556,207.30 556,169.50 556,229.60
35 Pla7397 23,260,728.00 23,264,689.60 23,264,546.00 23,265,510.60 23,263,946.20
36 Usa13509 19,982,859.00 19,984,049.30 19,983,685.10 19,983,902.30 19,983,955.90
37 Brd14051 469,385.00 469,391.90 469,393.80 469,393.50 469,395.20
38 D18512 645,238.00 645,250.60 645,251.10 645,248.40 645,250.60
39 Pla33810 66,048,945.00 66,069,872.00 66,070,847.80 66,068,291.00 66,068,696.40

Table 4 The abbreviations of the comparative methods

Abbrev. and refs. The comparative method
1 SOS-SA Simulated annealing-based
(Ezugwu et al., 2017) symbiotic organisms search

optimisation alg.
2 LBSA List-based simulated
(Zhan et al., 2016) annealing algorithm

3 MSA-IBS Multiagent simulated
(Wang et al., 2015) annealing alg. with

instance-based sampling
4 EAX Genetic algorithm using edge
(Nagata and Kobayashi, 2013) assembly crossover

5 GA-PSO-ACO Two-stage hybrid
(Deng et al., 2012) swarm intelligence

optimisation algorithm
6 GA-PSO-ACO Adaptive simulated annealing
(Geng et al., 2011) algorithm with greedy search

As borne out by the results recorded in Table 3, almost
all best results are obtained by M1 variation, which
the proposed method combined with the proposed three
neighbouring operators. Some best results are obtained
by M7 and M8, which combined only two neighbouring
operators. Notably, almost no best results can be achieved
by M3, M4, and M5 with only one neighbouring
operator. Apparently, although the combination of the three
neighbouring operators seems efficient for the proposed
GA-based TSP, the most effective neighbouring operator is
Swap. This is because most of the best results achieved
when the swap neighbouring operator is exist. In a nutshell,
combining the three neighbouring operators with 2-opt as
a local search operator to build the initial population for
GA-based TSP seems to have a direct improve to the final
outcomes.
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Table 5 The comparative results of the proposed method against six comparative methods

S/N Instance
OPT Proposed SOS-SA LBSA MSA-IBS EAX GA-PSO-ACO ASA-GS

(BKS) MGA-TSP (2017) (2016) (2015) (2013) (2012) (2011)
Mean Mean Mean Mean Mean Mean Mean

1 Ch150 6,528.00 6,528.00 6,529.84 6,529.80 6,529.00 -NA- -NA- 6,529.83
2 Kroa150 26,524.00 26,524.00 26,524.02 26,524.00 26,524.00 -NA- 26,803.00 26,538.60
3 Krob150 26,130.00 26,130.00 26,131.83 26,137.00 26,135.00 -NA- -NA- 26,178.10
4 Pr152 73,682.00 73,682.00 73,682.18 73,682.00 73,682.00 73,695.60 73,989.00 73,694.70
5 U159 42,080.00 42,080.00 42,080.98 42,080.00 42,080.00 42,080.00 42,506.00 42,398.90
6 Rat195 2,323.00 2,323.00 2,326.60 2,328.00 2,330.20 2,323.00 2,362.00 2,348.05
7 D198 15,780.00 15,780.00 15,782.11 15,780.00 15,780.00 15,780.00 -NA- 15,845.40
8 Kroa200 29,368.00 29,368.00 29,370.78 29,373.80 29,378.00 -NA- -NA- 29,438.40
9 Krob200 29,437.00 29,437.00 29,449.82 29,442.20 29,439.80 -NA- -NA- 29,513.10
10 Ts225 126,643.00 126,643.00 126,701.09 126,643.00 126,643.00 126,643.00 -NA- 126,646.00
11 Pr226 80,369.00 80,369.00 80,369.31 80,369.80 80,369.00 80,369.00 -NA- 80,687.40
12 Gil262 2,378.00 2,378.00 2,381.92 2,379.20 2,378.80 2,378.00 2,439.00 2,398.61
13 Pr264 49,135.00 49,135.00 49,135.72 49,135.00 49,135.00 49,135.00 -NA- 49,138.90
14 Pr299 48,191.00 48,191.00 48,227.93 48,221.20 48,226.40 48,191.00 48,763.00 48,326.40
15 Lin318 42,029.00 42,029.00 42,179.31 42,195.60 42,184.40 -NA- 42,771.00 42,383.70
16 Rd400 15,281.00 15,281.00 15,451.81 15,350.40 15,429.80 15,281.00 15,503.00 15,429.80
17 Fl417 11,861.00 11,861.00 11,877.52 11,867.80 11,875.60 11,861.00 -NA- 12,043.80
18 Pr439 107,217.00 107,217.00 107,561.15 107,465.20 107,407.20 107,217.50 -NA- 110,226.00
19 Pcb442 50,778.00 50,778.00 50,871.82 50,877.00 50,970.00 50,778.00 51,494.00 51,269.20
20 U574 36,905.00 36,905.00 37,164.49 37,164.60 37,155.80 36,905.00 -NA- 37,369.80
21 Rat575 6,773.00 6,773.00 6,839.52 6,837.40 6,839.80 6,773.00 6,952.00 6,904.82
22 U724 41,910.00 41,910.00 42,262.11 42,252.00 42,212.20 41,910.00 42,713.00 42,470.40
23 Rat783 8,806.00 8,806.00 8,899.55 8,888.20 8,893.40 8,806.00 9,126.00 8,982.19
24 Pr1002 259,045.00 259,045.00 261,802.49 261,805.20 261,481.80 259,045.00 266,774.00 264,274.00
25 Pcb1173 56,892.00 56,892.00 57,569.94 57,431.80 57,561.60 56,893.10 -NA- 57,820.50
26 D1291 50,801.00 50,801.00 51,291.09 51,198.80 51,343.80 50,801.00 52,443.00 52,252.30
27 Rl1323 270,199.00 270,199.00 271,710.63 271,714.40 271,818.40 270,199.00 -NA- 273,4 44.00
28 Fl1400 20,127.00 20,130.70 20,231.02 20,249.40 20,374.80 20,127.00 -NA- 20,782.20
29 D1655 62,128.00 62,129.30 64,111.92 63,001.40 62,893.00 62,131.20 65,241.00 64,155.90
30 Vm1748 336,556.00 336,556.00 336,719.39 339,710.80 339,617.80 336,572.60 -NA- 343,911.00
31 U2319 234,256.00 234,346.80 235,338.09 235,975.00 235,236.00 234,371.40 -NA- 236,744.00
32 Pcb3038 137,694.00 137,694.00 139,701.81 139,635.20 139,706.20 137,694.00 -NA- 141,242.00
33 Fnl4461 182,566.00 182,568.70 185,546.04 185,509.40 185,535.40 182,570.70 192,574.00 187,409.00
34 Rl5934 556,045.00 556,082.10 566,211.72 566,053.00 566,166.80 556,174.00 -NA- 575,437.00
35 Pla7397 23,260,728.00 23,262,643.40 23,800,000.00 23,800,000.00 23,800,000.00 23,264,735.70 -NA- 24,166,453.00
36 Usa13509 19,982,859.00 19,983,654.00 21,400,000.00 20,400,000.00 20,400,000.00 19,983,837.10 -NA- 20,811,106.00
37 Brd14051 469,385.00 469,391.30 478,098.91 478,010.00 478,609.60 469,398.10 503,560.00 486,197.00
38 D18512 645,238.00 645,248.40 659,457.45 657,457.20 658,149.20 645,248.00 -NA- 669,445.00
39 Pla33810 66,048,945.00 66,067,277.50 68,076,220.23 68,029,226.40 68,075,607.00 66,068,266.10 72,420,147.00 69,533,166.00

4.2 Comparative evaluation

In order to validate the performance of the proposed
method, the best means of the results obtained are
compared with other six well-regard methods summarised
and abbreviated in Table 4. These methods produced
the best known results recorded previously for the TSP
instances used. Some of these method used GA as a primary
method to solve TSP and others used hybrid technique
designed especially for TSP which are published recently.

The key comparative results are recorded in the Table 5.
These results obtained by the proposed method, are
compared with those obtained by the other comparative
methods. Numbers in Table 5, shows the mean results of
10 runs executed by each comparative method for all TSP
instances. The best results (lowest is best) is highlighted
in ital font. The mark ‘-NA-’ in the table refers to the
corresponding method that did not experimented with such
TSP instance or it cannot solve it. Again, the best known
result for each TSP instances is recorded in the third column
[i.e., OPT (BKS) column]. The TSP instance name has the
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number of cities to be visited which appeared in the second
column.

As shown in Table 5, the performance of the proposed
method is better than other comparative methods in 15
datasets. Furthermore, the proposed method is obtained the
best published results in 22 datasets as achieved by other
comparative six methods. However, the proposed method is
get the second best results for ‘D18512’ instance, where the
best results for this instance is obtained by EAX algorithm.
It should be noted that the EAX algorithm is ranked the
second, where it obtained the best results on 25 out of 39
datasets.

5 Conclusions and future work

In this paper, a new local search strategy based on efficient
neighbouring operators, is used to build a strong initial
population for GA to solve TSP problem. The proposed
new operator is called MGA-TSP, which is used three
neighbouring operators (inverse, insert, and swap). Each
one has its ability to navigate the TSP search space
in a different manner and thus maintain the diversity
level of GA algorithm. These three neighbouring operators
are cooperated with 2-opt strategy to build the initial
population. Thereafter, GA will iteratively improves that
population using proportional selection, EAX crossover and
simple mutation operators until the optimal solution is
reached.

For evaluation purposes, three popular TSP datasets
including 39 problem instances are used, which are
TSPLIB, National TSP, and VLSI TSP. These datasets
are different in terms of problem size and complexity.
The effect of each neighbouring operators and all possible
combinations are investigated in the form of convergence
scenarios. This is to study the best configuration of
the proposed local search method in the performance
of GA algorithm. In a nutshell, the GA with the three
neighbouring operators in the local search, building the
initial solution for GA achieved the best outcomes with a
reasonable complexity. Furthermore, the outcomes of the
proposed method are compared with those produced by
six other well-established methods using the same datasets.
Interestingly, the proposed method is able to excel the other
comparative methods for almost all TSP problem instances.

Building a strong initial solution for TSP with GA
has direct impact on the final outcomes. Therefore, other
neighbouring methods that are adapted for TSP can be
utilised and further studied to improve the GA connectivity
to the TSP search space by means of navigating the
inaccessible regions and thus improve the final results.
Furthermore, the effect of the GA parameters such as
mutation rate and crossover rate on the convergence
behaviour of MGA-TSP should be also studied in the
future to promote the best GA parameter setting. Other
challenging TSP datasets can be also investigated to further
ensure the validity of the proposed MGA-TSP in the future
work.
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