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Abstract: The key contribution of this paper is to determine the optimal operating parameters of
the methane reforming process for hydrogen production. The proposed strategy contained two
phases: ANFIS modelling and optimization. Four input controlling parameters were considered
to increase the hydrogen: irradiation time (min), metal loading, methane concentration, and steam
concentration. In the first phase, an ANFIS model was created with the help of the experimental
data samples. The subtractive clustering (SC) technique was used to generate the fuzzy rules. In
addition, the Gaussian-type and weighed average were used for the fuzzification and defuzzification
methods, respectively. The reliability of the resulting model was assessed statistically by RMSE and
the correlation (R2) measures. The small RMSE value and high R2 value of testing samples assured
the correctness of the modelling phase, as they reached 0.0668 and 0.981, respectively. Based on the
robust model, the optimization phase was applied. The slime mold algorithm (SMA), as a recent as
well as simple optimizer, was applied to look for the best set of parameters that maximizes hydrogen
production. The resulting values were compared by the findings of three competitive optimizers,
namely particle swarm optimization (PSO), Harris hawks optimization (HHO), and evolutionary
strategy HHO (EESHHO). By running the optimizers 30 times, the statistical results showed that the
SMA obtained the maximum value with high mean, standard deviation, and median. Furthermore,
the proposed strategy of combining the ANFIS modelling and the SMA optimizer produced an
increase in the hydrogen production by 15.7% in comparison to both the experimental and traditional
RSM techniques.

Keywords: sustainability; renewable energy; hydrogen; artificial intelligence; modern optimization

1. Introduction

Rapid technological advances and population growth have resulted in the heavy
usage of fossil fuels. Such fossil fuels are not only fluctuating in price and are limited
resources, but they are also having severe environmental impacts that are clearly seen
in global warming and health issues [1,2]. Hydrogen energy is a clean fuel with a high
gravimetric energy density that can be obtained from several abundant resources, such
as water and biomass [3,4]. Recent progress in fuel cells, which is one of the efficient
energy conversion devices with low or no environmental impacts [5,6], has resulted in
more attention being paid to hydrogen production. Hydrogen fuel cells can be used in the
transportation sector, thus eliminating one of the main pollution sources [7,8]. Additionally,
hydrogen fuel cells can be used at a large scale in power generation and power plants [9,10]
or internal combustion engines [11,12]. High purity hydrogen can be obtained from water
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using renewable energy sources such as solar energy [13,14], geothermal energy [15,16], and
wind energy [17,18]. Although high purity of hydrogen is obtained by water electrolysis, it
challenges the high cost compared with steam reforming, which is known as the cheapest
method used for hydrogen production on the commercial scale [19,20]. Currently, steam
reforming is used for converting methane and other hydrocarbons into hydrogen on the
surface of a catalyst [21,22]. The steps in the production of hydrogen from steam reforming
can be expressed by the following equations [23]:

Steam methane reforming reaction:

CH4 +H2O ←−−−−−−−→ CO+ 3H2 ∆H298K = 206 kJ/mol (1)

Water–gas shift reaction:

CO+H2O ←−−−−−−−→ CO2 +H2 ∆H298K = −41 kJ/mol (2)

The overall reaction:

CH4 + 2H2O ←−−−−−−−→ CO2 + 4H2 ∆H298K = 165 kJ/mol (3)

As can be seen from the reactions, the overall process is an endothermic reaction that
requires the supplying of energy to the system. The current energy is used from fossil
fuel sources, which have high environmental impacts. Securing the energy required for
steam reforming from renewable energy sources will save the environment [24]. Among
the different renewable energy sources, solar energy is abundant, has low environmental
impacts [25], and can be produced at a large scale [26].

Recently, photocatalytic steam reforming has come to be considered as a promising
route for hydrogen production [27–29]. There are several factors affecting hydrogen pro-
duction in photocatalytic steam reforming, such as the intensity of the solar radiation, type
and amount of the active photocatalyst, time of the irradiation, the methane to steam ratio,
etc. Optimizing such parameters will play a significant role in maximizing the hydrogen
yield and thus in considering this method for commercial hydrogen production.

Experimental methods are time-consuming and expensive and cannot be done if the
number of trials is too large. Physical and mathematical methods can instead fulfill the
purpose. However, they are sometimes based on assumptions that are not accurate. Due
to the difficulties that can be encountered in conducting real-time experiments to collect
more data, some modelling techniques can be a part of the solution. However, if the model
is not accurate and robust enough, it will not be reliable and can produce faulty results.
Accordingly, the choice of the modelling tool plays a vital stage in this process. Recently,
artificial intelligence (AI) has been used in this field, and its high efficiency has been proven
relative to the other traditional methods, especially for modelling complex and nonlinear
systems. There are many AI modelling tools, such as Artificial Neural Networks (ANN),
Regression Support Vector Machine (RSVM), Fuzzy Logic (FL), etc. Unfortunately, ANN
still suffering from identifying the proper architecture. Despite many research papers
trying to propose suitable numbers for the network’s hidden layers and the neurons in
every layer, they cannot give a concrete answer. Similarly, RSVM needs fine-tuning to
the controlling constants such as the regularization constraint and the slake variable. Yet,
FL is still occupying an outstanding position among other modelling techniques. This
can be noticed from the increasing number of applications in many disciplines, including
engineering fields. The Adaptive Network-based Fuzzy Inference System (ANFIS) model
is one of the fuzzy modelling tools. It combines the concepts of both FL and ANN in a
single structure. This motivates the authors to apply the ANFIS in constructing the model
of the current bio-hydrogen production system.

The major contributions of the current research work can be stated as follows:
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• A consistent ANFIS model was established based on measured data of the photocat-
alytic methane reforming process for hydrogen production.

• A new application of the slime mold algorithm was suggested to find the optimum
values of irradiation time, metal loading, methane concentration, and steam concen-
tration.

• Hydrogen production was boosted.

2. Experimental Work

La-TiO2 was prepared using the wet impregnation method [30]. Typically, TiO2 is
purified by calcination in an oven for three hours at 300 ◦C (10 ◦C/min). The impregnation
of the La was performed by thorough mixing of an appropriate amount of La(NO3)3.6H2O
dissolved in 45 cm3 of water (deionized) to the calcined TiO2 using a magnetic stirrer for
3 h at room temperature (25 ◦C). Then, the slurry obtained from the previous step was
dried at a temperature of 100 ◦C for 12 h followed by calcination at 800 ◦C for 3 h. The setup
used for hydrogen production using photocatalytic steam reforming is shown in Figure 1.
As can be seen in the figure, the catalyst of La/TiO2 (100 mg of definite composition in each
run) was loaded in a quartz tube of an inner diameter of 5 mm and a 67 mm length. The
solar effect was obtained by exposing the catalyst in the quartz tube to a UV light source
(300 W mercury lamp), and the whole photocatalytic part was covered to avoid an external
source of light. The methane (CH4 of 99.999% purity) was flowed after mixing with N2
(99.999) carrier gas and dry steam into the photocatalytic reactor, as shown in Figure 1.
The flow-rate of methane and N2 was controlled using a precise mass flow-rate, while
the flow-rate of the dry steam was controlled using a microprocessor digital meter. The
composition of the produced gas, i.e., unreacted methane, hydrogen, CO, and CO2, were
analyzed using gas chromatography [31].
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The following parameters were investigated: loading of La on the surface of the TiO2
(1–3%), methane content (10–50%), photo-irradiation time (10–150 min), and dry steam
content (0.5–1.5%).

3. Proposed Methodology

In the current research work, the proposed methodology contained two phases: ANFIS-
based modelling, and optimization.

3.1. ANFIS-Modelling

Figure 2 illustrates the structure of two fuzzy rules of a 2-input single-output system.
Fuzzification, inference engine, and defuzzification are the main three steps of fuzzy logic
modelling. The nonlinear mapping of the inputs is accomplished using membership
functions (MFs) in the fuzzification stage, which are represented by the Fuzzification Layer
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in Figure 1. Generating the fuzzy rules, evaluating the rules’ outputs (Product Layer, π),
and aggregating the fired rules (Normalized Layer, N) to obtain the final fuzzy output occur
in the inference engine stage. Finally, the output is mapped from the fuzzy form to its crisp
value in the last process, which is the defuzzification stage (Defuzzification Layer). ANFIS
uses two methods to generate the rules, namely grid portioning (GP), and subtractive
clustering (SC). The GP method divides the inputs’ space as a grid and generates the rule
that matches the input–output relationship in every grid cell. Unfortunately, this method
produces a large number of rules, which slow down the inference process. Additionally, the
rule-base might contain redundant rules. However, the SC generates the rules by clustering
the data at the minimum number of clusters, which results in a small number of rules.
Accordingly, the SC was adopted in this work. Despite there being many MF shapes and
defuzzification methods, the Gaussian shape and weight average are the best nominated,
respectively. In fuzzy modelling, the input–output mapping is simulated as an IF–THEN
rule. Examples of the ANFIS rules are as follows:

IF x is A1 and y is B1 THEN f1 = g1(x, y)

IF x is A2 and y is B2 THEN f2 = g2(x, y)

where the As and Bs are the membership functions of the two inputs x and y, respectively.
However, the final output f is calculated based on the two rules’ outputs, f 1 and f 2, as
follows:

f = ω̃1 f1 + ω̃2 f2 (Output Layer)
Evaluating ω̃1g1(x, y) and ω̃2g2(x, y) (Defuzzification Layer)
ω̃1 = ω1

ω1+ω2
and ω̃2 = ω2

ω1+ω2
(N Layer)

ω1 = µA1 ∗ µB1 and ω2 = µA2 ∗ µB2 (π Layer)
µA1 , µA2 , µB1 and µB2 are the MF values of the two inputs (Fuzzification Layer)
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3.2. Optimization Algorithms

In this work, the main goal was to find out the values of the controlling parameters
that maximize the hydrogen production. Consequently, four recent as well as efficient
optimization algorithms were considered to achieve this goal. The optimizers included
the slime mold algorithm (SMA), particle swarm optimization (PSO), EESHHO, and Har-
ris hawks optimization (HHO). However, a brief overview about the SMA algorithm is
presented in the following subsections.

3.2.1. Slime Mold Algorithm

The natural oscillation of the slime mold motivated Li et. al. to propose a recent and
simple optimizer, namely the slime mold algorithm (SMA) [32]. SMA can be classified
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as an SI optimizer in metaheuristic algorithms (MA). Similar to most of the optimizers,
SMA starts by proposing an initial set of a predefined number of solutions that represent
the swarm population. Then, every solution can be modified iteratively according to
the updating formula until reaching the final goal. The balance between the exploration
phase, which occurs at the beginning of the search process, and the exploitation phase,
which occurs at the end, is a key factor in any optimization process. To produce efficient
exploration and exploitation phases, SMA applies the positive and negative bio-oscillation
feedbacks to form the optimal path for reaching the food. To simulate this process, adaptive
weights are used. The mathematical model of the SMA is based on three mechanisms,
namely approach food, wrap food, and oscillation.

Mechanism 1: Approach Food

Foods usually spread odor in the air. Accordingly, the slime mold is stimulated to
look for the source of this odor. The mathematical formula that represents this behavior is
shown in the following:

x(k + 1) =
{ xg(k) + vb(w.x1(k)− x2(k)); r < p

vc.x(k); r ≥ p
(4)

p = tan h
(∣∣ f (x(k))− fg

(
xg(k)

)∣∣) (5)

vb = [−a, a] (6)

a = arctanh
(
−
(

k
Itmax

)
+ 1
)

(7)

where x and xg are the current and global best foods’ positions; x1 and x2 are two randomly
selected foods’ positions; vb is a parameter that oscillates in the range [−a, a]; w is emulating
the slime mould weight; vc is a linear parameter degraded from 1 to 0; r is a random
generator in the range [0 1]; f (x(k)) and fg

(
xg(k)

)
are the cost function values of the

current food position and the global best food position, respectively; k is the iteration index;
and Itmax is the maximum number of iterations.

Mechanism 2: Wrap Food

x(k + 1) =

{ r.(U − L) + L r < z
xg(k) + vb(w.x1(k)− x2(k)); r < p

vc.x(k) r ≥ p
(8)

w(Indx(k)) =

1 + r. log
(

fbest(k)− f (x(k))
fbest(k)− fworst(x(k))

)
; f (x(k)) ∈ f irst hal f

1− r. log
(

fbest(k)− f (x(k))
fbest(k)− fworst(x(k))

)
; f (x(k)) ∈ second hal f

(9)

Indx = sort( f (x(k))) (10)

where U and L are the highest and lowest values of the inputs’ search space, respectively;
fbest and fworst are the best and worst cost function values in the current iteration, respec-
tively; r is a random generator in the range [0 1]; vc is an oscillation parameter in the range
[−1 1]; and Indx is the indices’ vector of cost function values sorted in ascending order.
Based on the statistical study, the best value of z is 0.03.

Mechanism 3: Oscillation

To have a better location with respect to the food concentration, the slime oscillates
around the nominated place of food. This can be formulated by the oscillatory parameters
vb and vc. However, w represents the frequency of this oscillation.
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4. Results and Discussion
4.1. ANFIS-Based Results

In this work, the MF type, the fuzzy rules generator, and the defuzzification method
are, respectively, Gaussian shape, Subtractive Clustering (SC), and Weighted Average
(WAvg). The dataset used with permission in this work is composed of 26 data points,
which were decomposed for training and testing in a ratio of 80:20, respectively. This
implied that there were 21 samples for training, while the remaining 5 samples were
reserved for testing. The ANFIS was trained with a hybrid method by using LSE in the
forward path and Backpropagation in the backward path. The SC was applied to generate
the system’s rules, which were in this case study 20 rules. Then, the model was trained
until a lower MSE was encountered. The resulting statistical markers of the training phase
are shown in Table 1.

Table 1. Statistical evaluation of the fuzzy-based models.

MSE RMSE Coefficient of Determination (R2)

Train Test All Train Test All Train Test All

4.42E-13 0.0045 0.001 6.64E-07 0.0668 0.0321 1 0.981 0.997

Considering the above table, the RMSE values were 6.64E-07 and 0.0668, respectively,
for the training and testing phases. The coefficient-of-determination (R2) values were 1.00
and 0.981, respectively, for training and testing. The small MSE and the high coefficient-of-
determination values of the fuzzy model demonstrated a successful modelling phase. This
proved the superiority of fuzzy modelling compared with the RSM methodology, where
the later produced an RSME value of 0.769 and an R2 value of 0.925. Figure 2 shows the
3-input single-output structure of the ANFIS model. However, the plots of the Gaussian
shape membership functions are illustrated in Figure 3.
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Figure 4 shows the spatial representation in 3D view with contours of the system’s
input–output function with every two inputs at a time. The highest value of the output
went towards the dark red, while the lowest value went towards the dark blue. As it can
be seen from the figure, the increase in the steam concentration had a positive effect on
hydrogen production. This could be due to the role of the steam in the reforming process.
Around 20% methane demonstrated the highest hydrogen productivity. This could be
related to the possible carbon deposition at higher methane concentrations, and insufficient
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methane at lower concentrations [33]. Higher loading of the metal, i.e., more than 2 wt% of
La over TiO2, had a positive effect on the hydrogen production, which could be related to
the better morphology, higher surface area, and higher pore volume of the samples with
higher metal loading [31]. It also showed that an intermediate irradiation time of around
60 min was the best in terms of hydrogen production.
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Capturing the exact relation between hydrogen production and the four controlling
inputs encouraged the ANFIS model to predict the performance correctly. This was clear
from the plotting of the fuzzy model’s predicted outputs versus the experimental data in
the cases of training and testing phases, as shown in Figure 5. The close matching between
the experimental data points and the model’s results could be noticed clearly, especially for
the testing dataset. Additionally, the predictions’ plots around the one-hundred percent
accuracy line are shown in Figure 6 for both training and testing stages.

4.2. Optimization-Based RESULTS

In the current study, four recent and competitive optimizers were applied to obtain the
optimal set of parameters that maximizes hydrogen production. The study included particle
swarm optimization (PSO), Harris hawks optimization (HHO), evolutionary strategy HHO
(EESHHO), and the slime mold algorithm (SMA). The parameter settings of each optimizer
are shown in Table 2. For a fair comparison, the number of solutions and the maximum
number of iterations for all optimizers were set to 5 and 50, respectively. Additionally,
every optimizer was evaluated 30 times to assure its stability. Table 3 shows a comparison
between the resulting hydrogen production of the four algorithms over the 30 runs. Based
on the resulting data in Table 3, the statistical metrics were calculated to differentiate
between the addressed optimizers. Table 4 demonstrates that the SMA was more stable
than the others. This is clear from the high values of its Mean and Worst values as well as
the small values of the Standard Deviation (STD) and Median (in bold at Table 4). Moreover,
the average values of the convergence curves of the considered algorithms are shown in
Figure 7a. From the figure, the SMA was proved the best, as it gave the highest outputs
with fast convergence. However, Figure 7b shows the convergence curve of the maximum
value obtained by the SMA.
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Table 2. Parameter values of the considering optimizers.

Algorithm Parameter Values

SMA z = 0.03
PSO C1 = 1.5; C2 = 2
HHO a1 = 2; a2 = 1; GP = 0.5

EESHHO a1 = 2; a2 = 1; GP = 0.5

Table 3. Comparison between the resulting hydrogen production of the four algorithms over 30 runs.

Run PSO HHO SMA EESHHO Run PSO HHO SMA EESHHO

1 2.8087 2.8089 2.8087 2.5206 16 1.882 2.8047 2.6634 2.8089
2 2.8088 2.4544 2.8089 2.664 17 2.8088 2.6567 2.4877 2.8089
3 2.664 2.675 2.8089 2.8082 18 2.8088 2.8089 2.8087 2.8089
4 2.6639 2.8089 2.664 2.664 19 2.8088 2.7187 2.8088 2.7418
5 2.8089 2.8089 2.6638 2.6326 20 2.5208 2.7711 2.664 2.6606
6 2.797 2.7976 2.5183 2.5512 21 2.8081 2.8039 2.5191 2.8089
7 2.664 2.8089 2.8089 2.6123 22 2.664 2.8089 2.6639 2.664
8 2.5196 2.8089 2.5204 2.664 23 2.8088 2.3998 2.8088 2.5209
9 2.5187 2.389 2.5206 2.7394 24 1.874 2.664 2.664 2.5209

10 2.8088 2.6892 2.8089 2.6136 25 2.8087 2.7792 2.8082 2.6258
11 2.8085 2.727 2.8088 2.6115 26 2.8084 2.4152 2.8078 2.7358
12 2.5207 2.688 2.664 2.6444 27 2.8066 2.8076 2.8089 2.5167
13 2.1936 2.618 2.6639 2.679 28 2.8082 2.3131 2.8087 2.8089
14 2.8089 2.664 2.5115 2.4188 29 2.8066 2.6634 2.8089 2.8088
15 2.8089 2.664 2.6639 2.664 30 2.664 2.8035 2.664 2.5852

Table 4. Statistical measures of the optimizers’ results.

PSO HHO SMA EESHHO

Best 2.80886 2.80886 2.80886 2.80886
Worst 1.87399 2.31314 2.48765 2.4188
Mean 2.66299 2.68764 2.70128 2.66375
STD 0.25246 0.14571 0.1139 0.11597

Variance 0.06374 0.02123 0.01297 0.01123
Median 2.80735 2.72283 2.66404 2.66404
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proposed five solutions at every iteration. Every component represents one of the un-
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8b–d shows the convergence curves of the controlling variables obtained using SMA. 

Figure 7. (a) Cost function evaluation using different optimizers; (b) Convergence curve of the
maximum value obtained by the SMA.
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For more understanding of the behavior of the agents throughout the searching
process in the SMA algorithm, Figure 8 shows the distribution of the four components
of the proposed five solutions at every iteration. Every component represents one of
the unknown variables. Figure 8a illustrates the convergence curve of the output while
Figure 8b–d shows the convergence curves of the controlling variables obtained using SMA.
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Table 5 tabulates the resulting hydrogen production and their corresponding values of
the controlling variables for the different methodologies. The table shows that the proposed
strategy provided the maximum value of hydrogen in comparison to the experimental
and the RSM methods. It is clear from the table that the proposed strategy increased
the hydrogen production by 15.7 µmol/min compared to both the measured and RSM
methodologies. Moreover, the values of the controlling variables were more reasonable
than those obtained by the RSM.
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Table 5. Optimal parameters using different strategies.

Strategy Irradiation
Time (min)

Metal Loading
%

Methane Conc.
%

Steam Conc.
%

Hydrogen Prod.
µmol/min

Improvement
(%)

Measured [31] 10 1 30 1 2.42 -

RSM [31] 146.15 2.94 22.83 1.24 2.42 0

Suggested
strategy 10.005 0.9999 39.76 1.5 2.8 +15.7

5. Conclusions

This paper contribution is an efficient and robust methodology to maximize the hydro-
gen production based on determining the optimal parameters of the methane reforming
process. The suggested methodology contains two main parts: ANFIS modelling, and
parameter identification. Regarding the accuracy of the model, the RMSE value reached
0.0668, while the R2 value was 0.981. Then, the slime mold algorithm was employed to
identify the optimal parameters of the methane reforming process. The maximum hy-
drogen production by the proposed strategy was 2.8 µmol/min at an irradiation time
(min), metal loading, methane concentration, and steam concentration of 10.0%, 0.99%,
39.76%, and 1.5%, respectively. Therefore, by using the SMA, the hydrogen production
increased by 15.7% over all the considered methods. Accordingly, the proposed method of
collaborating the AI and optimization tools proved its efficiency in obtaining the optimal set
of parameters that maximizes the hydrogen production of the methane reforming process.
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