كتابة النص: الأستاذ الدكتور يوسف أبو العدوس - جامعة جرش قراءة النص: الدكتور أحمد أبو دلو - جامعة اليرموك مونتاج وإخراج : الدكتور محمد أبوشقير، حمزة الناطور، علي ميّاس تصوير : الأستاذ أحمد الصمادي الإشراف العام: الأستاذ الدكتور يوسف أبو العدوس
فيديو بمناسبة الإسراء والمعراج - إحتفال كلية الشريعة بجامعة جرش 2019 - 1440
فيديو بمناسبة ذكرى المولد النبوي الشريف- مونتاج وإخراج الدكتور محمد أبوشقير- كلية تكنولوجيا المعلومات
التميز في مجالات التعليم والبحث العلمي، وخدمة المجتمع، والارتقاء لمصاف الجامعات المرموقة محليا واقليميا وعالميا.
المساهمة في بناء مجتمع المعرفة وتطوره من خلال إيجاد بيئة جامعية، وشراكة مجتمعية محفزة للابداع، وحرية الفكر والتعبير، ومواكبة التطورات التقنية في مجال التعليم، ومن ثم رفد المجتمع بما يحتاجه من موارد بشرية مؤهلة وملائمة لاحتياجات سوق العمل.
تلتزم الجامعة بترسيخ القيم الجوهرية التالية: الإلتزام الإجتماعي والأخلاقي، الإنتماء،العدالة والمساواة، الإبداع، الجودة والتميّز، الشفافية والمحاسبة، الحرية المنظبطة والمستقبلية.
يحمل شهادة الدكتوراة في تخصص تقنيات حيوية من جامعة ندوفا الايطالية سنة 2004
PhD
This study aimed to develop novel SSR markers in tomato. Several BAC clones along chromosome 3 in tomato were selected based on their content. The criteria was the availability of genes, either directly or indirectly related to stress response (drought, salinity, and heat) in tomato. A total of 20 novel in silico SSR markers were developed and 96 important nearby genes were identified. The identified nearby genes represent different tomato genes involved in plant growth and development and biotic and abiotic stress tolerance. The developed SSR markers were assessed using tomato landraces. A total of 29 determinate and semi-determinate local tomato landraces collected from diverse environments were utilized. A total of 33 alleles with mean of 1.65 alleles per locus were scored, showing 100% polymorphic patterns, with a mean of 0.18 polymorphism information content (PIC) values. The mean of observed and expected heterozygosity were 0.19 and 0.24, respectively. The mean value of the Jaccard similarity index was used for clustering the landraces. The developed microsatellite markers showed potential to assess genetic variability among tomato landraces. The genetic distance information reported in this study can be used by breeders in future genetic improvement of tomato for tolerance against diverse stresses.
Background: Jordanian Awassi sheep (Ovis aries) is the dominant fat tail sheep breed that appeals to customers because of its various production systems, including fiber, meat and milk. This report is the first whole ewe genome sequence (WGS) of O. aries submitted in the NCBI database from Jordan. Methods: 64 Paired-end sequencing libraries were constructed and subjected to Illumina Hiseq 2500 sequencing system. Highquality reads were aligned against the reference sheep genome and detecting comprehensive sources (SNPs, InDels, SV, CNVs) of genetic variations. We have deposited data sequences at the NCBI under SRA (sequence reads archives) under the accession numbers SRR11128863, PRJNA574879. Result: Genome resequencing of Jordanian Awassi ewe was carried out with approximately 93.88 Gb with a mapping rate and effective mapping depths were 99.28% and 36.32. Around 19 million SNPs, 3,6 million InDels, 35,180 Structure variation and 13,524 copy number variation among the Jordanian ewe genome were detected. This wide range of genetic variation provides a framework for further genetic studies that will help understand the molecular basis underlying phenotypic variation of economically important traits in sheep and improve intrinsic defects in domestic sheep breeds.
Using high-throughput sequencing technology, the complete mitochondrial genome of Awassi-Jo breed (Ovis aries) was decoded. Mitochondrial genome was 16,617 bp in length. The genome contained 37 genes (13 protein-coding, 22 tRNA, and 2 rRNA) and a control region (D-loop region). The genes were encoded on the H-strand, except for the ND6 gene and 8 tRNA genes, which were encoded on the L-strand. The GC content is 38.9%. Phylogenetic analysis was performed to compare Awassi-Jo with other sheep breeds. The phylogenetic tree showed that Awassi-Jo diverged earlier than related breeds (Turkey, Italy, Germany, and Netherland) with a common ancestor in haplogroup HB. The results revealed the importance of mitochondrial data in studying sheep evolution and domestication.
The complete chloroplast genome sequence of Olea europaea subsp. europaea cultivar Mehras was determined using high-throughput sequencing technology. Chloroplast genome was 155,897 bp in length, containing a pair of 25,742 bp inverted repeat (IR) regions, which were separated by large and small single-copy regions (LSC and SSC) of 86,622 and 17,791 bp, respectively. The chloroplast genome contained 130 genes (85 protein-coding, 37 tRNA, and eight rRNA). GC content was 37.8%. We performed phylogenetic analysis with other isolates. The analysis showed that O. e. subsp. europaea cultivar Mehras has an ancient common ancestor with cultivated olives in Italy, Spain, and Cyprus
We report the whole ram genome of Jordanian Awassi (Ovis aries), screened using the power of Illumina HiSeq sequencing technology, providing insights into the ram's genomic structure. Generated data will help in the assessment of naturally occurring genetic variation and population structure of this sheep breed using different structure variation markers. Also, it will help in the established markertrait associations that can be used in marker-assisted breeding for qualitative and quantitative productive traits. A total of 23,812,247 singlenucleotide polymorphism (SNPs) were identified, of which 177,117 (0.74%) were in the coding regions, as well as 3.77 million insertions/deletions and 3357 frame-shifting mutations in the coding region. The re-sequencing revealed 38,900 structure variation types distributed along genome, including 45 insertions and 16,643 deletions types. Also, there were 13,689 copy number variations, of which 3743 were up-regulated, and 9946 were down-regulated. These results will help in describing SNPs and the distribution of structural variations types used in genetic mapping and breeding programs of sheep breeds.
Background: Blepharis constitutes an important part of the vegetation of the Jordanian arid and semi-arid regions, yet whether one or more species of this genus occurs in the Jordanian area is uncertain. We addressed this question by assessing morphological characters and testing Inter-Simple Sequence Repeat (ISSR) markers from three popula‑ tions of Blepharis: two northern (lower slopes of Kufranjah valley and the Dead Sea region) and one southern (Wadi al Yutm). Results: Shoots from randomly chosen Blepharis plants were harvested from each of the three populations for morphological and molecular analyses. In the northern populations, spikes were lax and bract width was signifcantly shorter than length of the longest lateral spine compared to the southern population. A multivariate linear discri‑ minant analysis distinguished the northern populations from the southern one by internode length, bract width, longest lateral spine length, and bract width to spine length ratio. The ISSR analysis revealed that 44 markers across eight primers were polymorphic with major allele frequency of 83.6% and an average of 5.5 polymorphic markers per primer. The genetic resemblance among individuals ranged from 0.27 to 0.96. The three Blepharis populations were accordingly clustered into two distinct groups, similar to the analysis of morphological diferences and corresponding with the “northern” and “southern” population designations. Conclusions: Our results strongly indicate the occurrence of two discrete Blepharis species in Jordan and reject the hypothesis that the genus is represented by only one species. We propose that the Blepharis species in Jordan are B. attenutata Napper (represented by the northern populations) and B. ciliaris (L.) B. L. Burtt (represented by the southern population). These fndings are important for informing and revising foristic work within the region and an updated key has been included in our fndings.
In arid and semi-arid countries such as Jordan, shortage in water sources might affect agricultural development and reduces the effectiveness of economic benefits of most crops planted in such areas. Tomato is an important agricultural crop and faces severe drought stress due to climate changes, therefore, measurement of proline accumulation in plant tissues is used as an indicator for drought stress tolerance. This research was conducted at Jarash University Campus in northern Jordan. A field experiment was carried out to investigate the impact of different storage temperature (+4ºC, - 20ºC and -80ºC) and different storage durations (0, 3, 6 and 11 weeks) on proline content in five different Jordanian tomato landraces. Results indicated that the average free proline content for samples tested directly after leaves collection was 7.1 µmol/g. Proline content in leaves stored at +4 ºC for 3, 6, and 11 weeks was 4.8, 1.8, and 1.1µmol/g, respectively, while for -20ºC was 11.8, 7.9, and 9.5 µmol/g for samples stored for 3, 6, 11 weeks respectively. In contrast the highest values for these parameters were obtained from samples stored at -80ºC, the average measured values of free proline content were 9.5, 7.8, and 12.9 µmol/g at 3, 6, and 11 weeks of storage, respectively. Based on the results obtained by this research, it is recommended to measure proline content directly after leaves collection. However, for large number of samples, keeping the samples at -20ºC not longer than six weeks could be a solution. Finally, we highly recommend the development of in-field method for measurement of free proline content.
Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.
Thirteen Jordanian olive cultivars (Olea europaea L.) were characterized using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSRs) markers. Using 15 RAPD and 14 ISSR primers, 156 and 85 reproducible markers were obtained, respectively. The percentage of polymorphism was 55 for RAPD and 58 for ISSR. Of the total polymorphisms identified, eight RAPD and three ISSR markers were cultivar-specific. Thirty-nine RAPD markers were able to distinguish 10 cultivars and 12 ISSR markers were able to distinguish 6 cultivars. Both markers (RAPD and ISSRs) were able to discriminate between all cultivars, indicating that when used in tandem, they represent powerful tools for olive varietal identification, enabling an accurate characterization of all cultivars. Such information may prove useful in the selection of optimal varietals and help promote continued progress in olive breeding strategies.
Genetic diversity among 25 natural populations of three different species of Quercus in Jordan at morphological and molecular levels using random amplified polymorphic DNA (RAPD) primers was assessed. Significant morphological and molecular variations among and within 25 Quercus populations were estimated. Standardized canonical discrimination functions for the investigated morphological traits showed that the first function explains 72.44% of the total variability between populations and was strongly influenced by leaf and scale length. Twenty-seven polymorphic markers and 5917 scored bands were generated using six RAPD primers. Based on morphological and RAPD data, the populations were grouped together in the same cluster according to species regardless of local of collections. Result of cluster analysis based on RAPD showed significant correlation with morphological characters based on Mantel’s test (r = 0.145**). This study has emphasized the ability of the morphological and molecular markers in determining the genetic diversity among and within the populations of Quercus and that the resulted high genetic variability could be utilized in implications of improving conservation, restoration and reforestation strategies of Quercus in Jordan.
962791984809+
All Rights Reseved © 2025 - Developed by: Prof. Mohammed M. Abu Shquier Editor: Ali Zreqat